

© Springer-Verlag New York Inc. 1999

Phylogenetic Analyses Reveal Ancient Duplication of Estrogen Receptor Isoforms

Scott T. Kelley, 1,* Varykina G. Thackray 2,*

Received: 19 January 1999 / Accepted: 26 May 1999

Abstract. To determine the origin and evolutionary significance of a recently discovered isoform of the estrogen receptor (ERβ), we examined the phylogenetic relationship of ER β to the well-known α isoform (ER α) and other steroid receptors. Our phylogenetic analyses traced the origin of $ER\beta$ to a single duplication event at least 450 million years ago. Since this duplication, the evolution of both ER isoforms has apparently been constrained such that 80% of the amino acid positions in the DNA binding domain (DBD) and 53% of the ligand binding domain (LBD) have remained unchanged. Using the phylogenetic tree, we determined the amount of evolutionary change that had occurred in two ER isoforms. The DBD and the LBD had lower rates of evolutionary change compared to the NH₂ terminal domain. However, even with strong selective constraints on the DBD and LBD, our phylogenetic analyses demonstrate two clearly separate phylogenetic histories for ERα and ERβ dating back several hundred million years. The ancient duplication of ER and the parallel evolution of the two ER isoforms suggest that, although ER α and ER β share a substantial degree of sequence identity, they play unique roles in vertebrate physiology and reproduction.

The estrogen receptor (ER) regulates the expression of genes involved in the growth, proliferation and differentiation of numerous bodily tissues including those in the bone, heart, brain, and reproductive organs (Ciocca and Roig 1995; Green et al. 1986). The estrogen receptor is organized into structural domains, which include a divergent NH₂ terminal domain, a DNA binding domain (DBD), and a ligand binding domain (LBD). The binding of estrogen to ER induces a conformational change that allows the hormone-receptor complex to dimerize and bind to DNA in order to modulate the transcription of specific genes. Two distinct regions of ER are involved in the activation of transcription. The NH₂ terminal domain contains a region with a transcriptional activation function (AF-1) that does not require the presence of hormone in order to be active, whereas the LBD's transcriptional activation function (AF-2) operates in a ligand-dependent manner (Kumar et al. 1986; Mangelsdorf et al. 1995; Tora et al. 1989).

The recent discovery of a distinct form of ER (Kuiper et al. 1996; Mosselman et al. 1996), termed ER β , generated questions about the biological importance of this newly discovered gene. Alignments of amino acid sequences have uncovered a high degree of similarity between ER α and ER β , particularly in the DBD and LBD regions, and experimental evidence has shown that ER α

¹ Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA

² Program in Molecular Biology, University of Colorado Health Sciences Center, Denver, CO 80262, USA

Key words: Estrogen — Estrogen receptor β — Steroid receptors — Phylogeny — Selection

^{*}These authors contributed equally to this work Correspondence to: S. Kelley; e-mail: Scott.Kelley@Colorado.edu

Table 1. Organism names and accession numbers for estrogen receptor amino acid sequences used in this study

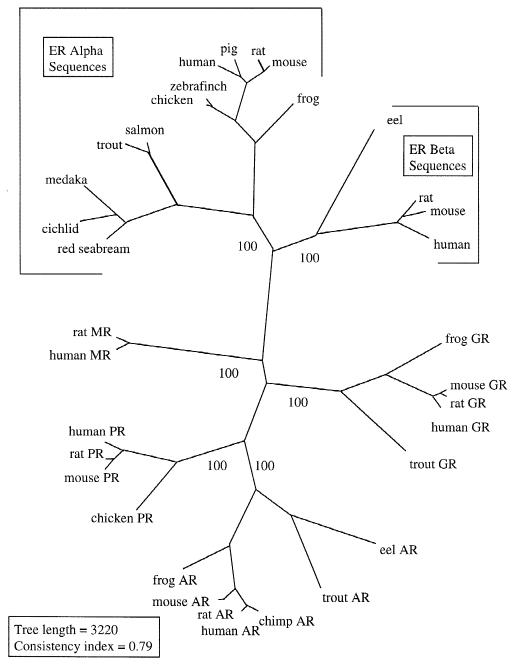
Common name	Taxonomic name	Accession No.
	Estrogen receptor β	
Eel	Anguilla japonica	AB003356
Human	Homo sapiens	X99101
Marmoset ^a	Callithrix jacchus	Y09372
Mouse	Mus musculus	U81451
Quail ^a	Coturnix japonica	AF045149
Rat	Rattus norvegicus	U57439
	Estrogen receptor α	
Camel ^a	Camelus dromedarius	X98107
Chicken	Gallus gallus	X03805
Cichlid	Oreochromis aureus	P50240
Cow ^a	Bos taurus	P49884
Frog	Xenopus laevis	625330
Horse ^a	Equus caballus	AF007799
Human	Homo sapiens	72114
Lizard ^a	Anolis carolinensis	AF095911
Medaka	Oryzias latipes	P50241
Mouse	Mus musculus	P19785
Pig	Sus scrofa	Q29040
Rat	Rattus norvegicus	P06211
Rhesus monkeya	Macaca mulatta	P49886
Salmon	Salmo salar	P50242
Seabream, gilthead ^a	Sparus aurata	AF013104
Seabream, red	Chrysophrys major	AB007453
Sheep ^a	Ovis aries	U30299
Trout	Oncorhynchus mykiss	103903
Turtle ^a	Trachemys scripta	1703692
Zebra finch	Taeniopygia guttata	L79911

^a Organisms for which only partial sequences were available.

and ER β have similar DNA binding, ligand binding, and transactivation properties (Cowley et al. 1997; Kuiper et al. 1997; Pace et al. 1997; Pettersson et al. 1997). To clarify the relationship of ER β to ER α , we performed phylogenetic analyses using the available ER sequences and other steroid receptor sequences. With these phylogenetic analyses, we asked whether or not ER β had evolved convergently from the ancestor of a related steroid receptor to resemble ER α . Because our initial results indicated that the two ER isoforms were closely related, we then asked whether or not these isoforms arose from a single duplication event.

Steroid receptor sequences, including ER, glucocorticoid receptor (GR), progesterone receptor (PR), androgen receptor (AR), and mineralocorticoid receptor (MR), were accessed through the National Center for Biotechnology Information (NCBI). The organism names and the accession numbers for the ER sequences and the other steroid receptor sequences are presented in Tables 1 and 2. Multiple sequence alignments of all the sequences were constructed using the default settings of Pileup in the GCG software package version 9.1 for Unix (Genetics Computer Group, Madison WI, USA). The final alignment used in the phylogenetic analyses contained approximately 562 aligned amino acid positions.

All phylogenetic tree-building analyses were imple-


Table 2. Organism names and accession numbers for other steroid receptor sequences used in this study

Common name	Taxonomic name	Accession No.
	Androgen receptor (AR)	
Eel	Anguilla japonica	BAA75464
Frog	Xenopus laevis	AAC97386
Chimpanzee	Pan troglodytes	AAC73048
Human	Homo sapiens	P10275
Mouse	Mus musculus	P19091
Rat	Rattus norvegicus	AAD13349
Trout	Oncorhynchus mykiss	BAA32784
	Glucocorticoid receptor (GR)	
Frog	Xenophus laevis	1730255
Human	Homo sapiens	4504133
Mouse	Mus musculus	121073
Rat	Rattus norvegicus	P06536
Trout	Oncorhynchus mykiss	1730254
N	Mineralocorticoid receptor (MR	2)
Human	Homo sapiens	4505199
Rat	Rattus norvegicus	P22199
	Progesterone receptor (PR)	
Chicken	Gallus gallus	P07812
Human	Homo sapiens	QRHUP
Mouse	Mus musculus	Q00175
Rat	Rattus norvegicus	I53280

mented using PAUP* (Swofford 1998). We used the maximum-parsimony (MP) criterion to determine the relationships among the various sequences. Of the 562 positions, 492 were parsimony-informative. Most parsimonious trees, for both the unrooted and the rooted analyses, were estimated using a heuristic search strategy with 100 random addition sequence replicates. Bootstrap resampling procedures were again performed using MP, and 1000 replications were completed in each analysis, with 10 heuristic random addition sequence searches performed in each replicate. Decay index values for the rooted tree were calculated using the program Autodecay 4.0 (Eriksson 1998). (Decay indices measure the number of steps separating the particular node from the next most-parsimonious tree or set of trees.)

To test whether $ER\beta$ might have evolved convergently to resemble $ER\alpha$ from other similar receptors, we used an unrooted phylogenetic analysis to determine the closest relatives of each of the ER isoforms. In these analyses, we included the 16 complete ER sequences (Table 1) along with 18 other steroid receptor sequences (Table 2). If the $ER\beta$ isoform arose convergently from a related steroid receptor ancestor to resemble $ER\alpha$, we would not expect the ER isoforms to be each other's closest relatives. Figure 1 shows the results of the phylogenetic analyses for all the full-length steroid receptor sequences. Note that regardless of the placement of the root, the two ER isoforms are closely related, indicating that $ER\beta$ did not arise convergently from the ancestor of another steroid receptor.

Next we asked whether the ER α and ER β sequences form two distinct monophyletic groups, which would in-

Fig. 1. Unrooted phylogenetic tree of the evolutionary relationships of the estrogen receptor sequences to other steroid receptors based on amino acid sequences. The tree is a consensus of two equally parsimonious trees. *Numbers* represent bootstrap values for the various steroid receptor groups.

dicate that they arose as a result of a single duplication event. Previous sequence alignments have shown that ER β sequences share common elements that are distinct from ER α sequences (Pettersson et al. 1997), which in turn suggests that the ER β sequences may belong to a separate monophyletic clade with respect to ER α . To answer these questions, we performed MP analyses using additional steroid receptor sequences as "outgroups." We considered the other steroid receptors to be appropriate outgroups based on several pieces of evidence. First, all of these receptors bind steroids. Second, all of the mem-

bers of the steroid receptor family share a similar structure composed of modular domains, with the DBD placed in the middle, flanked by a NH₂ terminal domain and a LBD. Third, the DBD of all these receptors contain a double zinc-finger motif involved in receptor-specific DNA binding and receptor dimerization. GR, PR, AR, and MR recognize the same DNA consensus sequence, whereas ER recognizes a slightly different, but still very similar, consensus sequence (Mangelsdorf et al. 1995).

Phylogenetic analyses of 12 complete ER α and 5 ER β sequences, using the steroid receptors as outgroups,

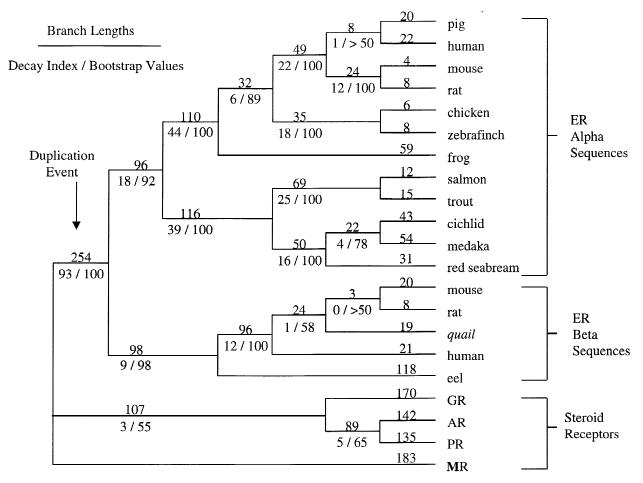
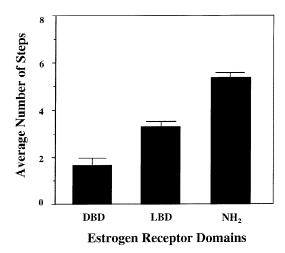


Fig. 2. Consensus of two equally parsimonious trees for the relationships among $ER\alpha$ and $ER\beta$ sequences using the steroid receptor sequences as outgroups. The length of the shortest trees was 2380 steps, with a consistency index of 0.86. Branch lengths are presented *above the branches*, while decay indices and bootstrap values are presented *below the branches*.


found that $ER\alpha$ and $ER\beta$ formed two separate and strongly supported monophyletic groups (92 and 98% bootstrap values, respectively; Fig. 2). The topology of the ERa clade was also concordant with the accepted relationships among vertebrates based on fossil evidence (Naylor and Brown 1998), supporting the notion that $ER\alpha$ and $ER\beta$ have evolved in parallel. (The topology of the ERB clade did not agree with the accepted relationships among vertebrates probably because only a few, distantly related ERB sequences were available for analysis). We also performed a number of MP analyses with the partial ER sequences listed in Table 1. Because the partial sequences did not overlap one another, we performed a separate phylogenetic analysis (with the same MP search parameters indicated above) for each of the partial sequences along with the full-length sequences. In every case, the partial $ER\alpha$ and $ER\beta$ sequences always grouped with their respective clades (data not shown).

The robust support for $ER\alpha$ and $ER\beta$ comprising two distinct, but clearly related, gene lineages suggests that the two isoforms arose from a "primordial" receptor in an ancient duplication event. Because both of the ER isoform clades contained sequences from bony fish, the

duplication event must have occurred prior to the diversification of these fish, approximately 450 million years ago (Kumar and Hedges 1998; Naylor and Brown 1998). The duplication event may have occurred even earlier, though more extensive sampling of ER α and ER β in basal vertebrate lineages will be necessary to determine just how long ago this may have happened.

During this long period of time, much of the DBD and LBD regions of ER α and ER β remained unchanged. Using the phylogenetic character analysis program MacClade 3.0 (Maddison and Maddison 1998), we traced the evolutionary changes at every amino acid position and discovered that 80% of the amino acids in the DBD and 53% in the LBD were completely invariant between ER α and ER β , with the exception of a few unique (autapomorphic) changes in some of the taxa. On the other hand, 97% of the amino acid positions in the NH $_2$ terminal domain have changed at least once over this same period of time.

Statistical analyses revealed significantly different rates of change among the three domains. For each amino acid position of $ER\alpha$ and $ER\beta$, we used MacClade to trace the minimal number of mutations (steps) that must have occurred at that position given the phyloge-

Fig. 3. Average number of steps (mutations) calculated for amino acid positions in three of the functional domains of the estrogen receptor. The number of steps at each amino acid position was calculated using parsimony over the entire tree in Fig. 2 (i.e., the analysis included both ERα and ERβ sequences). There were significant differences in the average amount of amino acid change occurring both among (non-parametric one-way ANOVA; p < 0.0001) and between each of the domains (Tukey's HSD test on ranked data; p < 0.05 for all pairwise comparisons). Standard errors are given *above each bar* of the graph.

netic tree (Fig. 2). As an example, if at amino acid position 100 of the ER multiple sequence alignment, the ER α fish sequences have a valine, while all the other sequences have an isoleucine (i.e., isoleucine is the ancestral state), we would infer that this position had changed one time on the branch leading to the fishes. Thus, the number of steps (the "treelength") for this position would be 1.

Using MacClade, we determined the tree lengths for all amino acid positions in the three main ER functional domains: the DBD, the LBD, and the NH $_2$ terminal domains. The average number of steps at all positions in each of the domains is presented in Fig. 3. Domains with a higher rate of overall evolutionary change would have a greater average number of steps than other domains. We found significant differences among the various ER domains in the average amount of change that had occurred (nonparametric one-way ANOVA; p < 0.0001), and the mean rates of change among the three domains were all significantly different (Tukey's HSD test on ranked data; p < 0.05). The NH $_2$ terminal domain experienced the greatest rate of change, followed by the LBD, and the DBD changed the least of the three (Fig. 3).

The low rates of change and the conservation of critical residues in the DBD and LBD, especially compared with the NH $_2$ terminal domain, imply that there has been strong selective pressure to maintain these functions in both ER α and ER β . Alternatively, the NH $_2$ terminal domain may have experienced more diversifying selection compared with the DBD and LBD. However, there are both functional and structural reasons to suspect that the DBD and LBD have been under strong selective constraints. For instance, the amino acids in the "P-box" of

the DBD, which are involved in the sequence-specific recognition of a hormone response element, are conserved among the ER α and ER β isoforms (Umesono and Evans 1989). In addition, the amino acids that make direct contacts with the DNA in the crystal structure of the DBD (i.e., the amino acids that bind DNA) are completely conserved (Schwabe et al. 1993). Also, our analyses showed that the amino acids of the ligand binding cavity, identified in the crystal structure of the LBD to be involved in direct and indirect hydrophobic interactions with the ligand (Brzozowski et al. 1997), are conserved with only a few autapomorphic changes.

Although the NH₂ terminal domain appears relatively unconstrained compared with the DBD and LBD, this region of ER plays an important role in the transactivation of gene expression. Experiments have shown that, in most circumstances, transcriptional activation functions in the NH₂ terminal domain and the LBD are both required for full receptor activity (Kumar et al. 1987; Tzukerman et al. 1994). In addition, the NH₂ terminal region of ER contains serine residues which have been implicated in cross-talk with various cell signaling pathways (Katzenellenbogen 1996; Tremblay et al. 1997; Weigel 1996).

Indeed, the divergence in the NH₂ terminal domain may well be the source of the apparent functional differences between ER α and ER β . The serine phosphorylation sites in the NH₂ terminal domain of ERα and ERβ are not conserved, suggesting that ER α and ER β may be regulated differently by cell signaling pathways. Additionally, there are two instances where differences in function between ERα and ERβ may involve the NH₂ terminal domain. First, Webb et al. (1995) showed an apparent interaction between the NH₂ terminal domain of ER α and the transcription factor Jun. ER α can activate the transcription of a reporter gene containing an AP-1 element in response to estrogen, whereas ERB cannot (Paech et al. 1997). Second, the partial agonism of the antiestrogen tamoxifen was mapped to the NH₂ terminal domain of ERa (McInerney and Katzenellenbogen 1996). Tamoxifen only displays antagonism to ERβ on a consensus estrogen response element, as opposed to partial agonism and antagonism to ERα (Barkhem et al. 1998). These experimental observations, and the significant sequence divergence observed between ERa and ERβ in the NH₂ terminal domain, suggest that any distinct biological functions found between ER α and ER β may be traceable to differences in this domain.

The fact that ER β comprises a separate genetic lineage dating back at least 450 million years argues that this gene performs distinct biological functions that have been maintained by natural selection for this long period of time. Our analyses also indicate that the ER β gene is quite widespread among chordates. Since ER α and ER β appear to have originated from a single duplication event predating the diversification of the bony fish, we predict

that copies of both isoforms will be discovered in all higher vertebrates. Indeed, Le Roux et al. (1993) detected the presence of multiple ER isoforms in trout, prior to the discovery of ER β , which further supports the notion that both isoforms are ubiquitous in vertebrates. In summary, the phylogenetic approach described in this paper enabled us to date the minimum time of divergence of the two ER isoforms, describe the selective constraints on three domains of these molecules, and predict what organisms possess these genes.

Acknowledgments. We thank A. de Queiroz, J. Mitton, S. Martin, S. Nordeen, and two anonymous reviewers for helpful discussions and comments on the manuscript.

References

- Barkhem T, Carlsson B, Nilsson Y, Enmark E, Gustafsson J, Nilsson S (1998) Differential response of estrogen receptor alpha and estrogen receptor beta to partial estrogen agonists/antagonists. Mol Pharmacol 54:105–112
- Brzozowski AM, Pike AC, Dauter Z, et al. (1997) Molecular basis of agonism and antagonism in the oestrogen receptor. Nature 389: 753–758
- Ciocca DR, Roig LM (1995) Estrogen receptors in human nontarget tissues: biological and clinical implications. Endocr Rev 16:35–62
- Cowley SM, Hoare S, Mosselman S, Parker MG (1997) Estrogen receptors alpha and beta form heterodimers on DNA. J Biol Chem 272:19858–19862
- Eriksson T (1998) AutoDecay version 4.0 (program distributed by the author). Department of Botany, Stockholm University, Stockholm
- Green S, Walter P, Kumar V, et al. (1986) Human oestrogen receptor cDNA: Sequence, expression and homology to v-erb-A. Nature 320:134–139
- Katzenellenbogen BS (1996) Estrogen receptors: Bioactivities and interactions with cell signaling pathways. Biol Reprod 54:287–293
- Kuiper GG, Enmark E, Pelto-Huikko M, Nilsson S, Gustafsson JA (1996) Cloning of a novel receptor expressed in rat prostate and ovary. Proc Natl Acad Sci USA 93:5925–5930
- Kuiper GG, Carlsson B, Grandien K, et al. (1997) Comparison of the ligand binding specificity and transcript tissue distribution of estrogen receptors alpha and beta. Endocrinology 138:863–870
- Kumar S, Hedges SB (1998) A molecular timescale for vertebrate evolution. Nature 392:917–920
- Kumar V, Green S, Staub A, Chambon P (1986) Localization of the oestradiol-binding and putative DNA-binding domains of the human oestrogen receptor. EMBO J 5:2231–2236
- Kumar V, Green S, Stack G, Berry M, Jin JR, Chambon P (1987) Functional domains of the human estrogen receptor. Cell 51:941– 951

- Le Roux MG, Theze N, Wolff J, Le Pennec JP (1993) Organization of a rainbow trout estrogen receptor gene. Biochim Biophys Acta 1172:226–230
- Maddison WP, Maddison DR (1993) MacClade: Analysis of phylogeny and character evolution. Sinauer Associates, Sunderland, MA
- Mangelsdorf DJ, Thummel C, Beato M, et al. (1995) The nuclear receptor superfamily: the second decade. Cell 83:835–839
- McInerney EM, Katzenellenbogen BS (1996) Different regions in activation function-1 of the human estrogen receptor required for antiestrogen- and estradiol-dependent transcription activation. J Biol Chem 271:24172–24178
- Mosselman S, Polman J, Dijkema R (1996) ER beta: Identification and characterization of a novel human estrogen receptor. FEBS Lett 392:49–53
- Naylor GJP, Brown WM (1998) Amphioxus mitochondrial DNA, chordate phylogeny and the limits of inference based on comparisons of sequences. Syst Biol 47:61–76
- Pace P, Taylor J, Suntharalingam S, Coombes RC, Ali S (1997) Human estrogen receptor beta binds DNA in a manner similar to and dimerizes with estrogen receptor alpha. J Biol Chem 272:25832–25838
- Paech K, Webb P, Kuiper GG, et al. (1997) Differential ligand activation of estrogen receptors ERalpha and ERbeta at AP1 sites. Science 277:1508–1510
- Pettersson K, Grandien K, Kuiper GG, Gustafsson JA (1997) Mouse estrogen receptor beta forms estrogen response element-binding heterodimers with estrogen receptor alpha. Mol Endocrinol 11: 1486–1496
- Schwabe JW, Chapman L, Finch JT, Rhodes D (1993) The crystal structure of the estrogen receptor DNA-binding domain bound to DNA: How receptors discriminate between their response elements. Cell 75:567–578
- Swofford D (1998) PAUP*: Phylogenetic analysis using parsimony (*and other methods). Sinauer Associates, Sunderland, MA
- Tora L, White J, Brou C, et al. (1989) The human estrogen receptor has two independent non-acidic transcriptional functions. Cell 59:477– 487
- Tremblay GB, Tremblay A, Copeland NG, et al. (1997) Cloning, chromosomal localization, and functional analysis of the murine estrogen receptor beta. Mol Endocrinol 11:353–365
- Tzukerman MT, Esty A, Santiso-Mere D, et al. (1994) Human estrogen receptor transactivational capacity is determined by both cellular and promoter context and mediated by two functionally distinct intramolecular regions. Mol Endocrinol 8:21–30
- Umesono K, Evans RM (1989) Determinants of target gene specificity for steroid/thyroid hormone receptors. Cell 57:1139–1146
- Webb P, Lopez GN, Uht RM, Kushner PJ (1995) Tamoxifen activation of the estrogen receptor/AP-1 pathway: Potential origin for the cell-specific estrogen-like effects of antiestrogens. Mol Endocrinol 9:443–456
- Weigel NL (1996) Steroid hormone receptors and their regulation by phosphorylation. Biochem J 319:657-667