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Abstract
Motivation: Methods that predict the structure of
molecules by looking for statistical correlation have
been quite effective. Unfortunately, these methods often
disregard phylogenetic information in the sequences
they analyze. Here, we present a number of statistics for
RNA molecular-structure prediction. Besides common
pair-wise comparisons, we consider a few reasonable
statistics for base-triple predictions, and present an
elaborate analysis of these methods. All these statistics
incorporate phylogenetic relationships of the sequences
in the analysis to varying degrees, and the different nature
of these tests gives a wide choice of statistical tools for
RNA structure prediction.
Results: Starting from statistics that incorporate phyloge-
netic information only as independent sequence evolution
models for each position of a multiple alignment, and ex-
tending this idea to a joint evolution model of two posi-
tions, we enhance the usual purely statistical methods (e.g.
methods based on the Mutual Information statistic) with
the use of phylogenetic information available in the se-
quences. In particular, we present a joint model based on
the HKY evolution model, and consequently a χ2 test of
independence for two positions. A significant part of this
work is devoted to some mathematical analysis of these
methods. We tested these statistics on regions of 16S and
23S rRNA, and tRNA.
Availability: The programs are available upon request.
Contact: slava@colorado.edu

Introduction

Construction of an automated technique for RNA structure
prediction is still an important problem in bioinformatics.
During the past 20 years, a fairly large number of
methods have been presented. These methods fall into
two general categories: energy minimization methods
(Jacobson and Zuker, 1993; Zuker and Sankoff, 1984;
Tinoco et al., 1971) and comparative sequence analysis

methods (Woese et al., 1983; Michel and Westhof, 1990;
Winker et al., 1990; Gutell et al., 1992; Gutell, 1994;
Cary and Stormo, 1995; Gulko and Haussler, 1996).
Comparative methods rather than energy methods, have
been generally more successful and robust on large RNA
molecules (Han and Kim, 1993; Le and Zuker, 1991). The
potential usefulness of including phylogenetic information
in comparative analysis has been recognized for some
time, and several authors have attempted phylogenetic
approaches to structure prediction (Muse, 1995; Gulko
and Haussler, 1996; Akmaev et al., 1999) . However,
some of the techniques that have been developed before do
not have automatic implementation of the phylogeny, and
require manual intervention (James et al., 1989; Woese et
al., 1983).

The usual approach to the statistical RNA structure
prediction is to analyze columns of a multiple alignment,
applying a standard log-likelihood ratio test. In essence,
the log-likelihood ratio statistic compares if the sequence
evolution of two positions (columns) is better described
by the joint evolution model, or by the product of two in-
dependent evolution models applied to these two positions
separately. This can be done with or without a phyloge-
netic tree describing the data. The simplest assumption
is that the sequences have evolved from one common
ancestor, and the time of evolution approaches infinity. In
other words, this process assumes that the phylogeny of
the sequences is a ‘star’ phylogeny with infinite branch
lengths, and, essentially, disregards the phylogenetic rela-
tionships in the data. If the equilibrium probabilities of the
nucleotides at each position are estimated by the sample
frequencies, then the statistic, based on these assump-
tions, is essentially the Mutual Information (MI) statistic
(Chiu and Kolodziejczak, 1991). Because MI ignores the
phylogenetic information in the sequences, it tends to
overestimate the amount of covariation between two posi-
tions, and accepts spurious correlations attributable to the
phylogenetic relationships among the sequences (Lapedes
et al., 1999). A number of papers have illustrated how

c© Oxford University Press 2000 501



V.R.Akmaev et al.

inclusion of the phylogeny helps to reduce the effect of
spurious correlations (Akmaev et al., 1999; Gulko and
Haussler, 1996).

The importance of the phylogenetic information has
been well accepted among researchers. Unfortunately,
the implementation of an evolution model, given a
phylogenetic tree, is sometimes very complicated and
requires a lot of computing power, especially for a joint
evolution model of a pair of positions, and simplifying
assumptions are usually made. For instance, a simplified
joint distribution model was made by Muse (1995) and
this method seems to work well in regions of RNA
molecules with known base-pairs. Unfortunately, it is
unclear how much noise the result would have for an
unknown region, and whether it would be possible to
distinguish the interacting and non-interacting pairs.
Gulko and Haussler (1996) have implemented a true
joint distribution model. However, the requirement of a
training data set makes their approach difficult to use for
molecules with unknown structure, and the dependence
of the result on the training data might make the result
itself inaccurate (e.g. the method might miss unusual
interactions). We have proposed a method that combines
a phylogenetic approach and a purely statistical procedure
in one algorithm for RNA structure prediction (Akmaev
et al., 1999). The tests have shown that our method is
superior to the MI methods and is much faster than any
current application of a joint evolution model.

In this paper, we show some extensive analysis of the
statistics, that appeared in a previous paper. Also, we
consider an application of this approach to the prediction
of triple interactions. Even though these methods have
been shown to work well, we acknowledge that the
implementation of the log-likelihood ratio statistic is a
more conservative approach, and would allow us to get
more accurate results. Thus, the final part of this paper
is devoted to the joint evolution model formalism and
implementation.

Statistical tools for analysis of RNA structure
Basic definitions
One of the tools we require is the ability to model se-
quence evolution at each position of a multiple alignment
independently. A number of sequence evolution models
have been developed in the past (reviewed by Swofford,
1998). The Jukes–Cantor one-parameter model is the sim-
plest (Jukes and Cantor, 1969), while the GTR (Lanave
et al., 1984), general time-reversible model is the most
general in the class of time-reversible models. Choosing
between the complexity and accuracy, we settled on the
Hasegawa–Kishino–Yano (HKY) model (Hasegawa et al.,
1985). The HKY model distinguishes between transitions
and transversions, and has equilibrium probabilities for

each nucleotide. This summarizes to a total of six param-
eters (two rate parameters and four equilibrium probabili-
ties) for each column of a multiple alignment. The instan-
taneous rate matrix for this model is

Q =



— απC βπG απU
απA — απG βπU
βπA απC — απU
απA βπC απG —


 (1)

where α and β are the transversion and transition rates
respectively, and πas are the equilibrium probabilities of
nucleotides a, where a = A, C, G, U .

The diagonal elements of the matrix are such that the
sum of the elements of each row is zero. The question is
how do we determine the parameters of the model? Usu-
ally, the equilibrium probabilities are chosen to be the fre-
quencies of the nucleotides at each particular position, but
these estimates disregard phylogenetic information among
the sequences. Instead of the frequencies, our estimates
of the probabilities and the rates are the maximum likeli-
hood estimates, given a phylogenetic tree. The likelihood
function of the data at each position can be computed for
a particular set of parameters such as the parameters in
the HKY model (Schadt et al., 1998). If Q is the instanta-
neous rate matrix, the transition probability matrix would
be e(Qt), where t is a branch length between two nodes
on the phylogenetic tree. The likelihood function is then
maximized with respect to its parameters. The aspects of
the maximization procedure have already been discussed
elsewhere (Tillier, 1994). Equation (2) defines the maxi-
mum likelihood statistic at position i

LHKY
i (T ) = max

α,β,πA,...,πU
LHKY

i (α, . . . , πU |T )

α > 0, β > 0, 0 ≤ πa ≤ 1 (2)∑
a∈{A,...,U }

πa = 1

LHKY
i (α, . . . , πU |T ) is the likelihood function of the

data at position i as a function of the parameters of
the model (equation (1)), and T is a phylogenetic tree.
Throughout this paper we consider double and triple
interactions between positions of a multiple alignment. Let
us define a few other useful statistics for positions i , j and
k, that describe such interactions from a statistical point of
view:

Li =
N∏

l=1

fal =
∏

a={A,C,G,U }
f N · fa
a

Li j =
∏

a,b={A,C,G,U }
f N · fab
ab (3)

Li jk =
∏

a,b,c={A,C,G,U }
f N · fabc
abc
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N is the number of sequences, fa is the frequency of
nucleotide a, where a = A, C, G, U at site i , fab is the
frequency of nucleotides a and b at sites i and j , fabc is
the frequency of nucleotides a, b and c at sites i , j and k.
Li is the maximum likelihood (ML) function at position i ,
given that all the sequences are independent. Li j is the ML
function at two positions under the same assumption, and
Li jk is the ML function at three positions of the multiple
alignment.

To see what impact the presence of phylogenetic infor-
mation has on the statistical analysis, we first compare the
ML function, given the HKY model, and the ML function,
assuming independence of the sequences

Ti = log
LHKY

i (T )

Li
(4)

The Ti statistic depends on two parameters: (1) the
phylogenetic tree; (2) the data at position (i). Any tree
that reasonably describes the multiple alignment would
fit the data better than a ‘star’ phylogeny with infinite
branches. Therefore, we expect Ti to be positive, given
an appropriate phylogenetic tree, in other words, a tree
that would be reasonably close to the true phylogeny.
On the other hand, if we fix the tree we can elaborate
what happens if we vary the data at this position. There
are two limiting cases: when the position is completely
conserved, and where there is so much variation that the
assumption of the independence becomes reasonable. The
Ti statistic is close to zero in both cases. In these two
cases the tree does not contain any information of what has
happened at this position evolutionarily. If we consider the
intermediate case when Ti is positive, it means that the tree
phylogenetically describes the evolution at this position as
opposed to the independence case where the evolutionary
dependencies are not accounted for.

It is worth noting that the distribution of Ti depends
on the tree T only in the numerator. Hence, it would
be different for distinct phylogenies, and, at this point,
it seems impossible to establish the distribution of Ti
theoretically.

Analysis of the interacting pairs
The idea that mutational changes at interacting positions in
homologous sequences are statistically correlated, because
these positions interact in the structure, is the main
underlying assumption of all comparative methods. All
these methods make a comparison between independent
and joint evolution models. The Ri j statistic we have
developed (Akmaev et al., 1999), which is presented in
the formula

Ri j = − log
LHKY

i (T )LHKY
j (T )

Li | j L j |i
(5)

has been shown to be a better indicator of the correlation
between two columns of a multiple alignment than the
standard comparative methods that ignore phylogeny.

Li | j is the ML function of the data at position i ,
given the data at position j , under the ‘star’ phylogeny
assumption.

The Ri j statistic compares whether the data at positions
i and j is better represented by the independent evolution
model, or by the data at the other position. If two positions
are correlated, the conditional MLs would be bigger
than the independent, which would make Ri j positive.
Why have we chosen to compare the product of the two
independent MLs with the product of the two conditional
ML functions, instead of using the more natural statistic
shown here?

R′
i j = − log

LHKY
i (T )LHKY

j (T )

Li j
(6)

To see the difference between these two statistics, we
need to rewrite the expressions in terms of the basic
blocks, defined in the previous section

Ri j = 2 · log
Li j

Li L j
− Ti − Tj

= 2 · N · Mi j − Ti − Tj

(7)

R′
i j = log

Li j

Li L j
− Ti − Tj

= N · Mi j − Ti − Tj

Mi j is the MI at positions i and j . If two positions
are independent, then Ri j is equal to R′

i j because MI,
in this case, equals to zero. On the other hand, Ri j is
bigger than R′

i j for a pair of correlated positions. This
observation indicates that Ri j would probably better suit
our purposes of sorting correlated and independent pairs.
If we analyze the expression for the Ri j statistic, we
would see that if the phylogenetic tree does not contain
any information, i.e. it is close to a ‘star’ phylogeny
with infinite branches, the last two terms disappear and
Ri j is equivalent to the well-known χ2 log-likelihood
ratio statistic (Figure 1, positions 1 and 2). If the tree is
critical (Figure 1, positions 3 and 4) and the positions
are independent, then the first term vanishes and the Ri j
becomes negative. If the two positions are correlated, the
first term would be non-zero, as is supposed to happen
with the log-likelihood ratio test. Figure 1 shows how
the Ri j statistic uses the phylogenetic information in this
analysis. In the case of multiple mutations (Figure 1A), the
tree does not help to explain phylogenetic dependencies
between these sequences. The T1 and T2 statistics are zero.
On the other hand, it describes these dependencies well
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CG AU

CG AU

CG AU

CG CG AU AUAU CG

A. Multiple Mutations B. Single Mutation

? ?

positions 1 and 2 positions 3 and 4

No\Stat. Li Li
HKY Ti Rij R′

ij Mij

1 0.015625 0.015625 0
8.31776 4.15888 0.69315

2 0.015625 0.015625 0

3 0.015625 0.066979 1.4555
5.40676 1.24788 0.69315

4 0.015625 0.066979 1.4555

Fig. 1. Diagram showing the evolution of two pairs of positions down the same phylogenetic tree. All the branches are assumed to be equal.
Positions 1 and 2 (A) show more evidence of correlated change than positions 3 and 4 (B). The table contains the values of six statistics for
these positions.

for positions 3 and 4, and the Ti statistic is subsequently
greater. Naturally, Mi j does not distinguish between these
two cases, but Ri j has different values for the pairs (1,2)
and (3,4). The correlation is more significant between sites
1 and 2. This separation between the values of Ri j for
these two types of data becomes more noticeable with a
bigger number of sequences.

If we compare the expressions in equations (7), we can
easily derive the relationship between R′

i j and Ri j

Ri j = R′
i j − log

Li L j

Li j

= − log
LHKY

i (T )LHKY
j (T )

Li j
− log

Li L j

Li j
(8)

It is interesting to examine why the addition of the log-
likelihood ratio on the right-hand side of equation (8)
makes the statistic more reliable. If we consider two cases,
one in which the positions are independent, and another
in which the positions are perfectly correlated, we can
see that in the first case Ri j = R′

i j , while in the second
case Ri j > R′

i j . This observation indicates that Ri j should
give us a better separation between interacting and non-
interacting positions than R′

i j . Ideally, we would like to
have a joint evolution model in this log-likelihood ratio
statistic

Rideal
i j = − log

LHKY
i (T )LHKY

j (T )

L joint
i j (T )

(9)

The R′
i j statistic uses an approximation to the joint

model likelihood function, which, in essence, is just
the ML function of a pair of positions given a ‘star’
phylogeny with infinite branch lengths. Therefore, R′

i j

would be less than Rideal
i j for reasonable phylogenetic

trees. Thus, the last term in equation (8) compensates
this approximation for correlated positions, and does not
change it for non-interacting pairs. This, in turn, gives
a clearer separation between the distributions of the Ri j
statistic for interacting and non-interacting positions. We
have performed a number of tests that showed the Ri j
statistic gives much better results than the R′

i j statistic
without increasing the number of false positives (Akmaev
et al., 1999, and other unpublished results).

To summarize, the Ri j method has proven to be a good
first-order approximation to the standard log-likelihood
ratio statistic involving a joint evolution model. This
approach allows us to better isolate correlated positions
out of the total number of pair-wise combinations that we
can then explore in more detail with a better model (e.g.
joint evolution).

A phylogenetic approach to base-triple prediction

Base-triples are among the essential tertiary interactions
in RNA structure. A number of base-triple predictions
have been made in tRNA, group I introns, 16S and
23S RNA (Levitt, 1969; Gutell et al., 1994; Michel
and Westhof, 1990; Gautheret et al., 1995). Although
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methods have improved sufficiently to identify some of
the tertiary interaction in these molecules, prediction of
base-triples is still not a very reliable procedure. Most
base-triple predictions have been made using pair-wise
comparative analyses. The principle works very well in
the detection of Watson–Crick pairs and other secondary
structure interactions such as GU pairs or tetraloops.
Unfortunately, it has been shown that base-triples often
lack the strict pattern of covariation observed in RNA
base-pairs. For example, the interaction of a Watson–
Crick base-pair with a third base occurs through different
types of non-canonical interactions, such as Hoogsteen
pairing (Hayashi et al., 1982), so that a mutation in one
position does not necessarily imply mutations in the other
positions (Gutell et al., 1994). That is why these rare
simultaneous mutations require more delicate handling,
and incorporation of phylogenetic information in the
analysis becomes even more important for base-triple
prediction. A number of attempts to construct an algorithm
for triple interaction predictions have been made using
mathematical (Gautheret et al., 1995) and biochemical
(Conn et al., 1998) models. Here we present a statistical
formalism for the analysis of base-triple interactions in
alignments of homologous RNA sequences that exploits
the phylogenetic relationships among the sequences.

Once again, the ideal χ2 test would be to consider the
log-likelihood ratio statistic for triple interactions

Sideal
i jk = − log

LHKY
i (T )LHKY

j (T )LHKY
k (T )

L triple
i jk (T )

(10)

Unfortunately, implementation of a joint evolution model
for triples appears even less realistic than for doubles.
Hence, we need to make an approximation for the ML
function under the joint model L triple

i jk . There are a number
of possible ways to approximate this statistic. The three
formulas of equation (11) represent some of them

S′
i jk = − log

LHKY
i (T )LHKY

j (T )LHKY
k (T )

Li jk

S′′
i jk = − log

LHKY
i (T )LHKY

j (T )LHKY
k (T )

Li | jk L j |ik Lk|i j
(11)

Si jk = − log
LHKY

i (T )LHKY
j (T )LHKY

k (T )

L jk|i Lik| j Li j |k
Li jk is the joint ML of three positions under the assump-
tion of a ‘star’ phylogeny with infinite branches. Li | jk is
the ML of the data at position i , given the data at positions
j and k. This statistic represents how well the data at one
site is predicted by the data at two other sites. Li j |k is the
ML at positions i and j , conditioned on the data at position
k. This is a measure of the prediction of the data at posi-
tions i and j from the data at position k. The first statistic

approximates the joint triple evolution model by a ‘star’
phylogeny with infinite branches and estimates the equi-
librium probabilities by the frequencies of the nucleotides.
The second statistic compares the independent ML under
the evolution model to the ML conditioned on the other
two positions, similarly to the Ri j statistic. The last one
has the same idea as the second one but the ML function
of the data at two positions is conditioned on the data at
the third position. To see more clearly the difference be-
tween these three statistics, we express them in terms of
the basic blocks, defined earlier

S′
i jk = − log

Li L j Lk

Li jk
− Ti − Tj − Tk

S′′
i jk = −3 · log

Li L j Lk

Li jk
− Ti − Tj − Tk

−N · (Mi j + Mik + M jk) (12)

Si jk = −3 · log
Li L j Lk

Li jk
− Ti − Tj − Tk

+ log(Li L j Lk)

To understand how each of these statistics behave,
consider the two opposite cases: (1) these three positions
are independent; (2) they are perfectly correlated. In the
first case, the first term in each expansion disappears, since
Li jk is equal to the product of the three independent MLs
(Li L j Lk). The last term in the S′′

i jk statistic also vanishes
because MI for two independent positions is equal to zero.
Thus, the formulae simplify to

S′
i jk = −Ti − Tj − Tk

S′′
i jk = −Ti − Tj − Tk (13)

Si jk = −Ti − Tj − Tk + log(Li L j Lk)

It is clearly seen that Si jk ≤ S′
i jk = S′′

i jk , when the
positions are all independent. The difference is the entropy
of the distributions at positions i , j , and k that disregard
phylogeny.

In the second case, when the positions are perfectly
correlated, the independent MLs are equal to each other
(L = Li = L j = Lk). The joint ML functions are also
equal to L , namely, Li jk = L and N · Mi j = − log L .
Thus, formulas can be rewritten as

S′
i jk = −2 · log L − Ti − Tj − Tk

S′′
i jk = −3 · log L − Ti − Tj − Tk (14)

Si jk = −3 · log L − Ti − Tj − Tk

Equations (14) show the following relationship between
these statistics for perfectly correlated positions, Si jk =
S′′

i jk ≥ S′
i jk . Another interesting case worth considering

is when two positions are correlated and the third base
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is independent of the first two. After some algebra, the
conclusion is that Si jk ≤ S′

i jk ≤ S′′
i jk , if we assume

that positions i and j form a base-pair, and position k is
independent of the other two. This shows the tendency of
the S′′

i jk statistic to overestimate the amount of covariation
between three positions if two of these positions covary,
even though there is the explicit subtraction of MI in the
expression. These calculations demonstrate that the Si jk
statistic has bigger values for interacting positions and
lower values for non-interacting positions out of these
three statistics. Therefore, we assume it would allow us
to get better predictions.

Figure 2 shows how these three statistics and the MI
statistic for three positions behave in a region of 23S
rRNA with a known base-triple (Conn et al., 1998). The
four histograms in Figure 2 present the output of these
statistics for this region. Figure 2A is the Si jk statistic, B
is S′

i jk , C is S′′
i jk , and D is the MI statistic, which does not

incorporate phylogenetic information. The phylogeny of
this data resembles a balanced tree with uniform branches,
hence the MI statistic is expected to work well on this
kind of data set, and, indeed, MI outperforms S′

i jk and
S′′

i jk (Figure 2B, C, and D). Although if we were to
detect this triple, we would have to accept about 40 false
triples, which is not a decent signal-to-noise ratio. The Si jk
statistic, on the other hand, has a range of values much
wider than S′

i jk and S′′
i jk (these three histograms are on the

same scale). This, in turn, indicates that the Si jk statistic
has much better specificity than the other statistics. The
test shows that the real triple is distinguishable with the
Si jk statistic.

Certainly we realize that this might have happened
accidentally due to the nature of this particular data set.
So we tested it on a number of other data sets that have
known triples. Figure 3 shows the result for a tRNA
base-triple prediction. Figure 3A shows the results of the
Si jk statistic applied to two tRNA data sets: aspartic acid
tRNA and phenylalanine tRNA, each containing around
80 sequences taken from eukaryotes, eubacteria, and
archae, and also including mitochondria and chloroplast
sequences. The analysis disregarded positions that had less
than 10% variation (i.e. at least 90% of the sequences
had the same nucleotide). That is why only two triples
were analyzed, though these two types of tRNA have
more base-triples. The problem with tRNA data sets is that
non-synonymous tRNAs have slightly different tertiary
structures (Gautheret et al., 1995). Therefore, the number
of homologous molecules available to us is sometimes
not enough to apply comparative analysis due to the lack
of variation at positions of interest. However, the results
show that the Si jk statistic is able to distinguish triple
interactions even in small data sets. The same type of
statistic, disregarding phylogenetic information, has also

been applied to these tRNA sets

M ′
i jk = − log

Li L j Lk

Li j |k Lik| j L jk|i
(15)

The effect of phylogenetic information, used in this test,
is not dramatic but is still apparent. If we were to catch
all true positives, we would get about 15 false positives in
the case of the Si jk statistic (Figure 3A), and about 50 in
the case of the M ′

i jk statistic (Figure 3B), even though the
reliability of the trees, based on 80 positions, is doubtful.
The S′

i jk and S′′
i jk statistics performed much poorer than

either of them.

Discussion
Base-triple prediction is a much more delicate procedure
than prediction of pair interactions. As has been shown
in this section, not every statistic would be very useful
or effective for this analysis, and, obviously, more ex-
tensive incorporation of phylogenetic information in the
analysis would greatly improve triple prediction. Even
the way the phylogenetic information is used in the Si jk
statistic, improves the prediction accuracy over a standard
frequency-based approach. This method appears to have
better specificity and sensitivity than methods that disre-
gard phylogenetic information. Certainly, implementation
of a joint triple evolution model would be a much more
rigorous approach, but the current state of computing
facilities does not make such an approach reasonable at
the moment. However, there are a number of different
auxiliary methods that might aid to confirm these predic-
tions. Gautheret et al. (1995) considered some of these
methods, and proposed the neighbor-effect model which
could provide more evidence for triple prediction. Though
the neighbor-effect statistic is not a perfect indicator of
a base-triple presence, it has been shown to be effective
in some of the triple predictions of tRNA and regions of
group I introns.

It is remarkable that triples with Si jk statistic values
close to the real triples usually come from two or more
base-pairs. If two base-pairs show correlation due to dif-
ferent factors not attributable to the physical interaction,
this would give four possible triple combinations with
values well above the values for the pool of the indepen-
dent positions. Fortunately, this type of correlation can be
easily detected and discarded. It is worth mentioning that
these statistics can not be successfully applied to positions
with a significant number of gaps. If one needs to analyze
this type of position, then the sequences that do not have
gaps at these sites have to be separated from the data set,
and analyzed independently.

Statistic based on joint evolution model
Although the methods proposed in the previous section
are robust, it seems unlikely that the distribution of any
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Fig. 2. Histograms showing the behavior of four different statistics in a region of 23S rRNA. All possible triples were used to make the
histograms, the plots were cut at 30. The values of each statistic for a known triple are marked by asterisks.
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Fig. 3. Histograms showing the output of the Si jk statistic and the same type MI statistic for tRNA data sets. All possible triples were used
to make the histograms, the plots were cut at 30. The values of each statistic at known triples are marked by asterisks.

of those statistics will be established. As we have already
mentioned, all these statistics depend on the particular
phylogenetic tree only in the numerator. Therefore, the

distribution of each statistic also depends on the tree,
which makes it impossible to find out statistical properties
of these distributions. Thus, if we would like to have an
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ability to base our analysis on a well-known distribution,
it is necessary to consider a standard log-likelihood ratio
test. These tests are usually used in cases where there is
a needs to decide whether two events are independent or
not. Equation (16) shows this statistic

χ2 ≈ −2 · log
L ind

i L ind
j

L joint
i j

(16)

The number of degrees of freedom for this statistic
depends on the number of estimated parameters in the
numerator and denominator. In general, it is the difference
between the number of independent parameters in the
denominator and the number of independent parameters
in the numerator. This idea applies in the case of the
MI statistic for RNA data sets, which is approximately a
multiple of a χ2 distribution with 9 degrees of freedom.

Unfortunately, the MI methods disregard phylogenetic
information. In this section, we present a test which is
similar to the MI statistic, but incorporates the phylogeny
of the data in the independent likelihood functions as well
as in the joint likelihood function.

Joint evolution model for a pair of positions
In the case of independent likelihood functions (equa-
tion (16)), we use the ML functions given the HKY model,
namely LHKY

i and LHKY
j . The hard question is the joint

evolution model. By the joint evolution model, we refer
to a model that describes the evolution of two positions
down a phylogenetic tree. If in the case of independent
models we had four states of the system (A, C, G, U ),
here the number of states increases quadratically and
raises from 4 to 16 (AA, AC, . . . , UU ). But this is not
the biggest problem: what is more important is the fact
that in order to get an approximate χ2 statistic, the joint
model has to be consistent with the independent evolution
model. This means that if we use the HKY evolution
model for each position separately, we are also supposed
to use the same kind of model for a pair of positions. This
brings us to the following instantaneous substitution rate
matrix

Qjoint =




— απAC βπAG απAU απC A · · ·
απAA — απAG βπAU 0 · · ·
βπAA απAC — απAU 0 · · ·
απAA βπAC απAG — 0 · · ·
απAA 0 0 0 — · · ·

...
...

...
...

...
. . .

0 0 0 απAU 0 · · ·




(17)
As in the independent model, α is the transversion
rate, β is the transition rate. πabs are the equilibrium
probabilities of nucleotide pairs. These parameters sum

to 18 unknown parameters, although only 17 of them are
independent, since the equilibrium probabilities sum to
1. The diagonal elements of the matrix are such that the
sum of all elements in each row is zero. Each element
Qjoint

i j is the instantaneous rate of mutation from state i
to state j . The states are numbered in the natural order:
AA, AC, AG, AU, C A, CC, . . . , UU . In this model, we
assume that it is impossible to have a double mutation
in one instant (e.g. the instantaneous substitution rate
from state AA to state UU equals zero). It is also worth
mentioning that this model assumes the same transition
and transversion rates for both positions. This assumption
is reasonable because we use this model for base-pair
identification, and as we saw in numerous tests, positions
that form a base-pair tend to have approximately equal
rates. Moreover, this assumption helps us to get rid of two
extra parameters.

The transition probability matrix for this instantaneous
rate matrix would be

P joint(t) = eQjoint·t (18)

Unfortunately, this matrix (each element of which is
a function of time) can not be found explicitly as a
function of this model’s parameters. This implies that
for each set of parameters it is necessary to perform the
complete eigensystem decomposition of the matrix Qjoint.
Fortunately, there is a way to reformulate this problem in
terms of a symmetric matrix (we would like to thank Alan
Lapedes for this idea). Eigensystem decomposition for a
symmetric matrix is a much easier and faster procedure,
and there are numerous methods that deal with this
problem (Atkinson, 1988).

Once we have calculated the transition probability
matrix, exactly the same procedure, as in the case of one
position, may be applied to find the likelihood function
of the data at two positions given this joint sequence
evolution model.

Log-likelihood ratio statistic
Before we use the joint likelihood model described in the
previous section, there is still the question of the unknown
parameters of this model. In the case of the independent
model, we estimated the parameters by the maximum
likelihood estimates. To be consistent with this approach,
we have to estimate the parameters of the joint model by
the maximum likelihood estimates, namely

LHKY
i j (T ) = max

α,β,πAA,...,πUU
LHKY

i j (α, . . . , πUU |T ) (19)

This maximization is, obviously, the most time-consuming
part of the algorithm. Keeping in mind that neither
gradient nor Hessian matrix are available for this function,
there are a very limited number of optimization methods

508



Phylogenetically enhanced statistical tools for RNA structure prediction

that may be applied here. Moreover, there is one more
complication in this problem, namely that the parameters
have very strict constraints

α > 0, β > 0

0 ≤ πab ≤ 1, ab ∈ {AA, . . . , UU }∑
ab∈{AA,...,UU }

πab = 1 (20)

Since this number of parameters is usually overfitting
the data at any particular position, the set of numbers that
maximizes the likelihood function is, in most cases, on
the boundary of the feasible region. Thus, application of
Newton’s method with the approximated gradient vector
and the Hessian matrix is not possible in this case. Instead
of this, we have implemented Powell’s direction set
method (Brent, 1973). Unfortunately, this method alone
usually gets stuck, not reaching the maximum, because of
the constraints of the problem (equations (20)). However,
the combination of this method with the simplex method
works very well (Nelder and Mead, 1965), and requires
just about 5 min on a Sun Ultra 30 station to maximize the
likelihood function for a pair of positions in a data set of
about 150–200 sequences.

Given the maximum likelihood estimates, we can con-
sider the following log-likelihood ratio test

Hi j = −2 · log
LHKY

i (T )LHKY
j (T )

LHKY
i j (T )

(21)

This statistic would be an asymptotic χ2 test if the
samples were independent. However, if the number of
sequences is fairly big, it seems reasonable to suggest that
at least some groups of these sequences are independent.
So this requirement of independence does not appear
to be prohibitive in this case. One also needs to say
that, in case of two independent positions, this statistic
may have negative values because of the equal-rates
assumption in the joint model. Therefore, this statistic is
approximately a χ2 statistic for positions with equal-rate
parameters (though this still needs a rigorous proof). To
find out the number of degrees of freedom, one needs
to calculate the number of independent parameters in
the numerator and the denominator (equation (21)). The
numerator has eight equilibrium probabilities and four
rate parameters. However, only six of these probabilities
and two rate parameters are independent, so this sums
up to eight independent parameters. The denominator has
18 parameters, 17 of which are independent. Hence, the
assertion is that Hi j is approximately a χ2 statistic with 9
degrees of freedom in the case of two positions with equal
transition and transversion rates.

Fig. 4. A small portion of the E.coli 16S rRNA, starting from
position 400 to position 547. The region starting at position 455 and
up to position 477 is the variable stem–loop region. The base-pairs
that have been analyzed by the Ri j and Hi j methods are indicated by
light connecting lines. The dark lined base-pairs (except the variable
stem–loop region) did not show up in our analysis because one or
both positions were conserved in the data set we used.

Hi j statistic test
To test the Hi j statistic, we examined the same set of
16S ribosomal RNA as in our previous paper (Akmaev
et al., 1999). Sequence alignment for this region of 16S
rRNA was downloaded from the world wide web (Van
de Peer et al., 1998). This alignment has approximately
150 bacterial sequences from 12 bacterial families. It
is worth mentioning that the phylogenetic tree we used
was generated using all positions of the 16S rRNA
multiple alignment for better accuracy. In previous work,
we showed by using this data set that the Ri j statistic
outperforms the MI statistic (Akmaev et al., 1999). Here,
we compare the Ri j and the Hi j methods to see if the Hi j
statistic, besides having a statistical significance measure,
makes more accurate predictions and is worth the trouble
of its calculation.

Figure 4 shows the particular region of the 16S rRNA
we were interested in. Unfortunately, we could not con-
sider all existent base-pairs because some of these posi-
tions were more than 95% conserved, and these were dis-
regarded in the analysis. The positions 455 through 477
form a variable stem–loop region that was omitted in our
previous work. Predictions inside this variable region are
complicated by the fact that about half of the sequences
have gaps at these positions.

As mentioned previously, we consider the Ri j statistic as
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i j Rij Hij i j Rij Hij

406 436 109.3 105 502 543 107.3 103

407 435 23.8 40 503 542 58.3 65

408 434 -5.6 42 504 511 -25 5

416 421 -25.9 -4 504 534 -30.2 -1

416 482 -29.1 -4 504 540 -19.1 4

417 426 35.3 35 504 541 12 11

418 425 60.9 57 511 540 28 29

421 526 -43.2 -4 511 541 -25 6

422 482 -33.4 3 513 538 72.2 74

427 446 -41.4 11 514 532 -35.9 2

427 494 -37.7 8 514 537 5.7 15

438 496 29.6 39 534 541 -30.2 -2

440 497 -28 46 540 541 -19.1 5

442 492 74 104 457 473 -102.8 10

443 491 16.9 84 457 474 -127.7 6

444 490 94 110 457 475 -56.5 29

445 489 64 60 457 476 -115.3 18

446 488 -5.7 18 457 489 -189.6 2

450 483 17.6 33 457 490 -245.6 0.1

483 484 -29.6 29 457 491 -241.3 14

486 504 12 10 458 473 -77.3 4

486 511 -25 6 458 474 -50 24

486 534 -30.2 -1 458 475 -94 13

486 540 -19.1 7 458 476 -141.6 0.1

486 541 12 9 458 489 -189.8 0.3

501 544 42.8 37 458 490 -218 2

Fig. 5. This table shows the values of Ri j and Hi j statistics for pairs within a region of 16S rRNA (Figure 4) that have Ri j above −50. The
positions colored blue form base-pairs. The green values of the statistics are correct predictions, the red numbers are false predictions. In the
bottom-right corner of the table, we also consider pairs from the variable stem–loop region, which is missing in many of the sequences, and
compare the results for Hi j and Ri j .

the first-order approximation to the joint model approach.
To see what difference the implementation of a joint
evolution model makes (the Hi j statistic), we extended the
acceptance threshold to make sure we included all known
base-pairs. The table of results for Ri j and Hi j methods
is shown in Figure 5. If we assume 95% significance for
the Hi j statistic, this would set the threshold at about 17
(assuming that Hi j has a χ2 distribution with 9 degrees
of freedom). This means that if the value of Hi j is
>17 we reject the null hypothesis (that the positions are
independent), and if it is <17, then we accept it. In
this case, we can see that among these pairs (ignoring
the variable region for the moment) Hi j rejects two true

positives (pairs 504–541, and 514–537) and accepts one
false positive (pair 483–484), although it is seen that the
values for 504–541 and 514–537 are the highest among
the values for independent pairs. On the other hand, if
we set the threshold for Ri j at zero, then the Ri j method
rejects three true positives (408–434, 440–497, 446–488)
and accepts two false positives (486–504, 486–541). Thus,
the Hi j statistic is about 5% more accurate than Ri j .

In Figure 5 the lower-right corner of the table represents
analysis of the variable stem–loop region. We took two
positions (457 and 458) and calculated Hi j and Ri j for
pairs of these two positions with positions inside the
variable region and with positions outside this region.
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One of the major weaknesses of the Ri j statistic is that,
although positions with lots of gaps still have the largest
Ri j values with the correct pair (e.g. 457–475, 458–474;
Figure 5), these values are still indistinguishable from the
independent positions without gaps. There are a number
of ways to treat gaps in these methods. For instance, a
gap may be considered as a fifth character, or it may
be removed from the analysis completely. Unfortunately,
there is no way to make a consistent implementation
of gaps for the denominator and the numerator of the
Ri j statistic. The values of the Ri j statistic, which are
shown in Figure 5, were obtained by implementing gaps
as an extra character in the conditional likelihoods, and
disregarding them in the independent likelihood functions
(equation (5)). This is a more conservative approach that
does not result in many false positives at those positions.
On the other hand, the Hi j statistic is implemented in such
a way as to treat this problem consistently, and is able to
predict these two base-pairs on the same scale. From this
reasoning, it is clear that Hi j should outperform Ri j in the
very important case of positions with gaps, and our tests
show this to be the case (Figure 5). Certainly, the power
of the test drops with the decreased amount of information
(half of the sequences we used have gaps at positions 457
and 458), and there is a false prediction even in this small
example, but the improvement of Hi j over Ri j in this case
of numerous gaps is remarkable.

Discussion

Our analyses indicate that the Hi j statistic does improve
the accuracy of predictions over Ri j especially in the case
of gaps. One of the main advantages of the Hi j statistic
is that there is a way to establish a significance of this
test (even though some assumptions are required). In the
case of Ri j , it is really impossible to say if a value of
−50 in one data set is less significant than a value of
50 in another data set. This is why the question of a
threshold for the Ri j statistic arises for each particular set
of sequences. This problem is even more noticeable for
the base-triple technique that we presented in the previous
section. Moreover, as we said before, the Hi j test treats
positions with gaps properly. To illustrate how important
this problem is one might say that just 5% of gaps can
make the result of the Ri j statistic so biased that it would
be impossible to make any predictions at this position.

Although Hi j improves predictions accuracy somewhat,
it is not clear that this improvement is enough to compen-
sate for the time necessary to evaluate all pairs of posi-
tions. Instead we recommend a first pass with Ri j , fol-
lowed by the more robust Hi j test on the higher Ri j corre-
lations.
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