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Summary

In this study, we explored the possibility that dis-
persal from terrestrial subsurface sources ‘seeds’ the
development of geothermal spring microbial assem-
blages. We combined microscopy and culture-
independent molecular approaches to survey the
bacterial diversity of spring source waters in Yellow-
stone National Park, Lassen Volcanic National Park,
and Russia’s Kamchatka peninsula. Microscopic
analysis uncovered clear evidence of microbial cells
from spring sources in all three regions. Analysis
of source water phylogenetic diversity identified
members of all bacteria groups found previously in
downstream sediments, as well as many other phylo-
genetic groups. Closely related or identical 16S
sequences were determined from the source waters
of geographically distant, chemically distinct springs,
and we found no association between spring water
chemistry and microbial diversity. In the source
waters of two different Yellowstone springs, we also
discovered a phylogenetic group of uncultured Firmi-
cutes never before reported in geothermal habitats
that were closely related to uncultured bacteria found
in the hyper-arid Atacama Desert. Altogether, our
results suggest geothermal features can be con-
nected via the subsurface over long distances and
that subsurface sources provide a potentially diverse
source of microorganisms for downstream surface
mat communities.

Introduction

The discovery of chemolithotrophic microbes thriving at
‘extremes’ of temperature and pressure makes it conceiv-
able that the subsurface harbours microbial life. Studies
have documented significant microbial life under the sea-
floor (Kormas et al., 2003; D’Hondt et al., 2004; Teske,
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2005; Hubert et al., 2009), in petroleum reservoirs (Magot
et al., 2000), in deep-water aquifers (Stevens and McKin-
ley, 1996; Chapelle etal, 2002; Takai etal, 2004;
Nealson et al., 2005), beneath ice sheets (Priscu et al.,
1999), and in drilling samples collected below the world’s
deepest mineshafts (Takai efal, 2001; Chivian et al.,
2008; Wanger et al., 2008). The subsurface may also play
a central role in shaping geothermal microbial ecosys-
tems. Specifically, the subsurface may provide a source
for the microbes found in the water and sediments of hot
springs and pools, and may also be a conduit for disper-
sion within geothermal systems. The downstream sedi-
ments of geothermal springs harbour vibrant and diverse
microbial communities that change dramatically along
geochemical gradients (Donahoe-Christiansen et al.,
2004; Boyd et al., 2007; D’Imperio et al., 2007; Mathur
etal.,, 2007). Although numerous researchers have
studied the diversity and chemistry of many such mats,
the dispersal origins of the microbes comprising these
communities are poorly understood (Bonheyo etal.,
2005). A study by Macur and colleagues (2004) showed
that visible microbial mats developed less than one day
after the redirection of a spring outflow channel, suggest-
ing rapid seeding of these communities (Macur et al.,
2004).

Mechanisms of dispersal discussed in the literature
include aerosol dispersal from other springs and insect
dispersal. A study by Bonheyo and colleagues (2005)
found evidence of aerosolization and air dispersal of geo-
thermal microbes. However, after 48- to 72-hour sampling
periods, Bonheyo et al. collected only a small number of
cells with a large net despite the fact that they sampled
adjacent to a rich microbial mat. More efficient methods of
geothermal steam collection have shown that geothermal
steam may contain up to 102 cells miI~' (Ellis et al., 2008).
Nevertheless, it is difficult to imagine how aerosols might
rapidly seed a microbial mat so close to the source of a
rapidly flowing spring as was observed by Macur and
colleagues (2004).

Another possible source of dispersal may be waters
arising from the subsurface itself. Subsurface waters may
carry microorganisms into a flowing spring or along an
aquifer between springs. Bonheyo and colleagues (2005)
dismissed the possibility of subsurface hydrothermal
sources in Yellowstone connecting very distant springs
because springs from different regions are often



hydraulically isolated from one another. Nevertheless,
subsurface waters may connect more closely situated
springs within a hydrological region. For instance, a study
of subterranean hot springs in Iceland found diverse
microbial communities in deep subsurface volcanic zones
(1500-2000 m deep) with many organisms closely related
to those found in geothermal surface features (Marteins-
son et al., 2001). The authors suggested that thermophilic
microbes within volcanic zones may disseminate from the
subsurface through water conduits. Another recent study
by Boomer and colleagues (2009) found evidence that
waters gushing out of geysers contained the same organ-
isms (Roseiflexus-like Chloroflexi) that formed the basis of
the artificial biofilms at the air-water interface. And, in a
study of CO, uptake and fixation, Boyd and colleagues
(2009) also collected sufficient biomass for experimenta-
tion by sampling directly from Dragon Spring origin
waters. These findings suggest that the subsurface, albeit
hydraulically restricted, may provide an important source
for geothermal mat colonization.

To investigate the role of the subsurface in geothermal
spring mat formation, we collected source-origin waters
arising from 10 geothermal springs in three geothermal
regions: two in the USA and one in Russia. We purpose-
fully selected artesian springs with rapid flow rates and
easy access to the spring origins. The positive pressure of
the water assured that microbes sampled in the spring
waters came from underground. The waters of flowing
springs are not recycled underground, unlike pools (Brock
and Mosser, 1975), and the positive pressure excluded
airborne microorganisms from moving into the subsur-
face. Because we sampled source waters of flowing
springs before their emergence point, we were confident
that the organisms found came from below ground.
Having obtained water samples, we used microscopic
analysis to detect intact microbial cells and estimated
cell abundance, and culture-independent methods
based on 16S ribosomal RNA (16S rRNA) gene
sequences to reveal the phylogenetic diversity of source-
water organisms.

Results and discussion

Our results allow us to make a number of important infer-
ences about the microbial diversity of subsurface waters
in geothermal systems. Below-ground source waters of
every geothermal spring tested contained intact microbial
cells (Fig. 1). Phase-contrast, DAPI and SEM images pro-
vided clear evidence of microorganisms in the spring
origin waters (Fig. 2, Figs S1-S3). While cell counts were
relatively low on a per millilitre basis (Fig. 1), they were
significant given the estimated flow rates of the various
springs. Calculating from cell counts and flow rates of the
sites tested, outflow channel seeding rates would range
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from 7.5 x 10* cells s™' (spring AS101) to 1.8 x 10° cells
s (spring RM), indicating that spring source waters could
be an abundant source of intact microbial cells for down-
stream communities. We also note that the cell counts
were very conservative estimates since we counted ‘clus-
ters’ of cells (see examples in Fig.2) as a single cell
because we could not reliably count the number of cells in
these groups.

Culture-independent molecular analysis of bacterial
16S ribosomal RNA gene sequences also uncovered con-
siderable diversity of organisms in the subsurface origin
waters, including many Aquificales and a number of other
groups commonly discovered in geothermal habitats
(Fig. 3, Figs S4-S6). Not only did the subsurface waters
contain a broad diversity of thermophilic organisms, but
we also found substantial phylogenetic relatedness
between organisms arising from source waters and those
collected in a previous study from downstream sediments.
For example, we uncovered a large number of Hydro-
genobaculum sequences closely related, though not iden-
tical, to those found abundantly in AS101 and AS102
sediments. We also discovered organisms related to
Acidicaldus and Deinococcus found previously in sedi-
ments (Fig. 3, Fig. S4). Our results are similar to those of
a recent study of biofilm formation in a geyser run-off
channel that found the same organisms in geothermal
waters that were also present on slow-growing artificial
biofilms (Boomer et al., 2009).

The overall diversity found in the subsurface waters, as
measured by numbers of discreet phylogenetic groups,
equalled or exceeded the combined diversity previously
found in downstream sediments using the same PCR
primer and cloning methods. A phylogenetic diversity test
(PD test) using a jackknife re-sampling approach (see
Appendix S1) found no significant difference between
AS102 source and sediments, but found AS101 and RM
source waters to be significantly more diverse than
the combined diversity in the sediments (PD test;
P = 0.0001). Indeed, a number of the sequences deter-
mined from the AS101 waters were closely related to
sequences found in the Roaring Mountain sediments
(Fig. S4). This is quite surprising given the stark chemical
differences between the AS and RM (sulfur versus non-
sulfur) springs and the fact that the phylogenetic diversity
of the microbial communities found in the AS101 and RM
sediments was essentially non-overlapping (Mathur et al.,
2007). Our study of the origin waters (Fig. S7) and their
relation to the sediments does come with a time-lapse
liability. However, even if they were done concurrently
there is no way to be certain about how long the sediment
organisms had remained in place. The organisms in the
origin waters are not identical, but closely related to those
previously uncovered in our earlier sediment study
(Mathur et al.,, 2007), suggesting some continuity of
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Fig. 1. Origin water cell counts of DAPI-stained cells. Counts of cells were estimated by counting at least 500 cells or 100 fields. GVNS,
Kamchatka, Geyser Valley Neutral Spring; LVNPTS, Lassen Volcanic National Park, Toto Spring; LVNPVS, Lassen Volcanic National Park,
Voldemort Spring; LVNPDK, Lassen Volcanic National Park, Devil's Kitchen; YNPRM, Yellowstone National Park, Roaring Mountain;
YNPAS101,Yellowstone National Park, Amphitheater Springs 101; YNPAS102, Yellowstone National Park, Amphitheater Springs 102;
YNPAS104, Yellowstone National Park, Amphitheater Springs 104. Cells and micro-colonies were also observed in Kamchatka samples, but
cell concentrations were not estimable due to the excessive mineral fluorescence. Error bars represent 95% confidence intervals constructed
using standard error and t-values (0.05) based on n>100. A correction factor was applied to account for sample volume and area counted.

potential colonists available in the source waters. In
support of this, the chemistry (Table 1) shows that there
was little change over the elapsed yearlong time (Mathur
et al.,, 2007), but that certainly does not take into consid-
eration physical factors, such as meteoric conditions, that
might have altered the sediment diversity.

Although we do not have downstream sediment com-
parisons for the Lassen and Kamchatka springs, these
source waters contained even greater phylogenetic diver-
sity than that found in the Yellowstone subsurface waters
(Figs S5 and S6; PD test; P = 0.0001). Moreover, we
found distantly situated source waters contained nearly
identical types of organisms. The phylogenetic analysis of
Lassen spring waters reveals many instances in which
distant springs contained overlapping phylogenetic
groups of organisms (Fig. S5). The pattern was even
more dramatic in the Kamchatka springs. For example,
the Geyser Valley and Uzon Caldera springs are located
24 km apart, yet both contained many sequences from
the same phylogenetic groups. For example, two related
16S sequences in the Sulfurihydrogenibium clade,

BO7KNSYRO05 and E12KUCYRO05 came from Geyser
Valley and Uzon Caldera samples, respectively, as
did the Thermus-related clones B02KNSYRO5 and
FO4KUCYRO5 (Fig. S6). The same held for the Mut-
novsky Volcano and Geyser Valley subsurface waters,
situated 160 km apart (Fig. S6).

The lack of association between phylogenetic diversity
and spring origins is particularly intriguing given the stark
chemical and physical differences among springs. For
example, the Mutnovsky Volcano spring waters had a pH of
3.5, while both the Uzon Caldera and Geyser Valley spring
had neutral pH. Geyser Valley also contained very high
levels of arsenic, known to be an important factor in deter-
mining sediment diversity (Clingenpeel et al., 2009), while
Mutnovsky Volcano had high levels of sulfur resulting in a
low pH (Table S1). The Lassen springs were also each very
distinctive for both pH and temperature. The pH ranged
from 1.5 in Devil’'s Kitchen to 6.7 in Toto spring, and the
temperature ranged from a low of 73°C in Toto spring to
91°C in Voldemort spring (Table 1). Yet, we found many of
the same phylogenetic groups in these springs.
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Table 1. Chemical and physical characteristics of sampled springs along with GPS co-ordinates.

Fig. 2. Origin waters from Lassen Volcanic
National Park flowing springs.

A and B. Devil’s Kitchen. (A) Phase contrast;
(B) DAPI.
C and D. Toto Spring, Little Hot Springs
Valley. (C) DAPI; (D) DAPI.

E and F. Voldemort Spring, Little Hot Springs
Valley. (E) Phase contrast; (F) DAPI. Bar,

10 um.

GPS co-ordinates Source Flow
temperature  Eh rate
Spring name Location Region Latitude Longitude pH (°C) (mV) (s
AS101 Ampbhitheater Springs  YNP 44°48'414”"N 110°43'43.50"W  1.08 75.8 316 0.25
AS102 Amphitheater Springs  YNP 44°48'3.90”N 110°43'43.70"W  1.14 77 16 1.46
AS104 Amphitheater Springs  YNP 44°48'2.00”"N 110°43'43.0"W 166 716 58 1.29
Roaring Mountain Roaring Mountain YNP 44°46'46.80"N  110°44’19.20"W 1.19 935 214 182
Devil’s Kitchen Devil's Kitchen LVNP 40°26'27.90”"N  121°25'59.50"W 1.5 88 101 0.34
Voldemort Spring Little Hot Spring Area LVNP 40°27'22.80”N 121°31’04.40"W 3,57 817 -13 NA
Toto Spring Little Hot Spring Area  LVNP 40°27’21.60”"N  121°31’04.50"W 6.7 76.9 —270 NA
Uzon Caldera Uzon Caldera Kamchatka  53°59'55.06”"N  159°26'50.75”E 7 91 NA NA
Mutnovsky Volcano ~ Mutnovsky Volcano Kamchatka  52°28’00.74”N 158°0926.16"E 3.5 89 NA NA
Geyser Valley Valley of the Geysers ~ Kamchatka  53°57'55.25”N  159°04'41.95”E 7 96 NA NA

No Eh measurements were taken in Kamchatka due to lack of instrumentation.

YNP, Yellowstone National Park; LVNP, Lassen Volcanic National Park. NA, not available.
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Fig. 3. Phylogenetic tree representing 16S rRNA gene sequences determined from AS102 source waters (boldface) and sediments from a
previous study (Mathur et al., 2007) of the same spring along with sequences from cultured and uncultured relatives obtained from GenBank
(accession numbers included). Numbers above the branches indicate Bayesian posterior probabilities, while MP and NJ bootstrap values are
presented below the branches. Bootstrap support values below 50% were not included in the figure.
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In regards to the origins of the microbes found in the
spring source waters, our phylogenetic trees reveal a
‘potpourri’ of microbial lineages related to bacteria iso-
lated from hot springs and sediment, volcanic soils, and
other sources. Members of the Aquificales were common
in our samples. However, we also found many organisms,
particularly in the Kamchatka samples, that were related
to bacterial genera found in geothermally heated soils,
including Acetobacter, Alicyclobacillus, Bacillus, Methylo-
bacterium, Paenibacillus and Thiobacillus (Norris et al.,
2002; Botero et al., 2005), as well as many known soil
bacterial genera (e.g. Bradyrhizobium). The considerable
phylogenetic diversity found in every spring we studied,
and the dissociation between this diversity and the chem-
istry of the spring waters, both indicate that the organisms
we discovered arose from a wide variety of habitats.

In fact, a number of previous studies have isolated
microbes from habitats whose physical parameters lie
clearly outside their temperature and/or pH optimum (e.g.
Hankinson and Schmidt, 1988; Zakalyukina et al., 2004;
Ellis et al., 2008). These findings support the idea that
hardy microbes can persist in unsuitable environments for
long periods of time, perhaps in a dormant state. In the
case of the spring source waters, we suggest that
microbes are transported via subsurface waters into new
habitats where a subset thrive and grow. This would
explain both the high diversity of the spring source waters
and the fact that so much of the diversity, based on the
types of organisms found, appears adapted to very differ-
ent types of environments.

Further emphasizing this point, we also discovered at
least one bacterial group in the spring source waters
never before reported from geothermal habitats: a puta-
tive new genus of Firmicutes with no cultured represen-
tative. These sequences were found abundantly in
samples of AS101 and RM source water collected in
2005, and all were nearly identical (< 1% divergent) to
uncultured bacterial sequences. The GenBank matches
included four sequences of uncultured bacteria found in
the hyper-arid Atacama desert (Maximum bootstrap and
Bayesian posterior probability support; Fig. 4). These
sequences formed a strongly supported monophyletic
group of uncultured bacteria within the Firmicutes from
arid or hyper-arid soils (Fig. 4). This result appears quite
surprising, given that all our sequences were obtained
from water sources rather than soils. To our knowledge,
this would be the first discovery of sequences from this
group in Yellowstone springs or any geothermal habitats.
We suggest that a shift in the hydrology, or perhaps the
spring run-off, may have dislodged these organisms from
a soil or rock habitat and transported them in the subsur-
face waters. The hydrology of the Yellowstone ecosystem
is constantly in flux and undergoes particularly dramatic
alterations during the spring run-off period (Kharaka et al.,
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2000). A hydrological shift would also explain why we
found these organisms so abundantly in two different
springs 2 km apart on back to back days in 2005, but at no
other time.

Although 16S methods provide considerably greater
insight into environmental microbiological diversity than
culture-based approaches, we cannot rule out any biasing
effects of primer selection or cycling conditions on our
results (Suzuki and Giovannoni, 1996). However, by using
the same primer combination that was used in our earlier
studies (Mathur et al., 2007), we assured that the bias
would at least be consistent for comparative purposes.
Also, our interpretations do not rely on abundance data,
per se, but rather on patterns of phylogenetic diversifica-
tion. Collectively, our results support the hypothesis that
the subsurface provides at least a partial source, in addi-
tion to potential wind or insect dispersal, of the microbial
diversity observed in surface communities, though the
precise origins of the microbes remain unclear. The
underground water appears to provide a conduit for dis-
persion of these organisms, rather than a habitat in and of
itself similar to the steam vent waters of fumaroles (Ellis
etal., 2008). However, it is not understood whether
microbes are originating from distant mats and simply
travelling through the subsurface, coming from nearby
geothermal soils, or actually persisting in underground
reservoirs. Regardless, our findings have important rami-
fications for understanding the formation and dispersal
patterns of geothermal communities.
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Supporting information

Additional Supporting Information may be found in the online
version of this article:

Fig. S1. Origin waters from Kamchatka peninsula flowing
spring sites.
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A and B. Neutral Spring, Geyser Valley. (A) Phase contrast;
(B) Sybr Green.

C and D. UC1A Uzon Caldera, spring 1A. (C) Phase contrast;
(D) DAPI.

E and F. Yellowstone, Roaring Mountain, Norris Geyser
Basin. (E) Phase contrast; (F) DAPI. Bar, 10 um.

Fig. S2. Origin Waters from Yellowstone National Park
flowing springs.

A and B. Amphitheater Springs (AS) 101. (A) Phase contrast;
(B) DAPI.

C and D. AS 102. (C) Phase contrast; (D) DAPI.

E and F. AS 104. (E) Phase contrast; (F) DAPI. Bar, 10 um.
Fig. S3. Scanning electron microscope image of cells from
origin waters in three collecting areas: (A and B) Lassen
Volcanic National Park, CA, USA; (C) Yellowstone National
Park, WY, USA; (D) Kamchatka, Russia.

A. Toto Spring, filamentous cluster of cells embedded in
matrix material. Background, cover glass. Bar, 50 um.

B. Toto Spring, group of matrix-associated filaments-spheres,
with distinctive morphology, overlying crystal resembling
sulfur (s). Background, cover glass. Compare (A) and (B) with
DAPI-stained cells (C) and (D). Bar, 20 um.

C. Roaring Mountain, spore forming cell and thin filament
(arrows). Debris and particles appear on 0.22 um Millipore
filter along with cells. Bar, 10 um.

D. Al's Spring, Mutnovsky Volcano, thin filament (arrows)
lying on debris and mineral particles on 0.22 um Millipore
filter. Bar, 10 um.

Fig. S4. Phylogenetic tree of source water determined 16S
rRNA gene sequences (boldface) and sediment sequences

from AS101. (See Fig.3 legend for details concerning
sequence names and statistical support values.)

Fig. S5. Community level phylogenetic analysis of springs
located in Lassen Volcanic National Park, California. Both
Toto Spring and Voldemort Spring were in the Little Hot
Spring Area separated from each other by about 3.2 m.
Devil’s Kitchen was a spring about 7 km from Little Hot Spring
Area.

Fig. S6. Community level phylogenetic analysis of 16S
gene sequences determined from springs along the
Kamchatka peninsula in Eastern Russia. Geyser Valley and
the Uzon Caldera are located ~24 km apart. The Mut-
novsky Volcano and Geyser Valley are located ~ 160 km
apart.

Fig. S7. Turbulence at the spring origin point suggests high
flow rates (see Table 1). (A) AS102, horizontal outlet and (B)
AS104, vertical outlet. Long arrow indicates downstream
direction; arrowhead marks sampling site. (A) Bar, 20 cm; (B)
Bar, 5 cm.

Table S1. Chemical and physical properties of origin water
samples collected from three geographic locations.
Appendix S1. Experimental procedures.

Please note: Wiley-Blackwell are not responsible for the
content or functionality of any supporting materials supplied
by the authors. Any queries (other than missing material)
should be directed to the corresponding author for the
article.
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