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Abstract The leopard shark (Triakis semifasciata) is an
important predator in coastal marine ecosystems of Califor-
nia, targeted by recreational and commercial Wshermen and
of speciWc interest in Wsheries management. From October
2003 to August 2006, 169 leopard sharks were collected
from the coast of California (between 40.750°N and
32.678°N) and analyzed for mitochondrial and nuclear
genetic structure. Analyses of mtDNA control region
sequences revealed relatively low levels of genetic variation
(Wve haplotypes, average pairwise divergence � = 0.0067).
In contrast, leopard sharks were highly polymorphic for
inter simple sequence repeats (ISSRs), which characterize a
broad range of the nuclear genome. The null hypothesis of
panmixia in California waters was rejected for both genetic
markers, and ISSRs displayed a statistically signiWcant pat-
tern of isolation by distance (IBD) across the species range
(P = 0.002). A variety of analyses showed that divergence
is most pronounced in the northernmost population of
Humboldt Bay. Natal philopatry in T. semifasciata was
tested using Siegel-Tukey tests on data partitioned by
breeding site status, and sex-speciWc philopatry was tested
by comparing IBD plots between sexes. Although there was
some evidence for natal philopatry in leopard sharks

(P = 0.038), and population divergence may be related to
the proximity of breeding sites (P = 0.064), we found no
support for sex-speciWc philopatry. In addition to identify-
ing a novel set of highly variable genetic markers for use in
shark population studies, these results may be used to better
inform management decisions for leopard sharks in Califor-
nia.

Introduction

Sharks are an ancient lineage of Wshes that have consider-
able ecological and economic value worldwide due to their
predatory trophic status and highly sought Wns (Cortes
1999; Clarke et al. 2006; Myers et al. 2007). Many sharks
are vulnerable to overexploitation due to their low fecun-
dity and slow maturation (Musick et al. 2000). As in other
migratory species, an understanding of their genetic popu-
lation structure is essential for eVective management
(Hueter et al. 2005). Several factors hinder the progress of
shark population genetics, including slow mutation rates in
mitochondrial DNA (mtDNA) that lead to low genetic vari-
ation (Martin et al. 1992), diYculty in sampling individuals
from an entire species range, and unclear dispersal patterns
as a result of poorly deWned barriers in the marine environ-
ment (Palumbi 1994; reviewed by Heist 2004). Philopatric
behavior (i.e., natal homing: Hueter et al. 2005) and the
lack of pelagic larvae may further aVect patterns of genetic
population structure when compared to Wshes with highly
dispersive larvae. However, newer molecular techniques
have made the study of shark population genetics more
feasible.

The leopard shark (Triakis semifasciata) is one of
approximately 40 cartilaginous Wshes found in coastal Cali-
fornia waters (Ebert 2003). This species is important to
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both recreational and commercial Wsheries in California,
yet is vulnerable to overexploitation throughout its historic
range from central Oregon to Mazatlan, Mexico (Miller and
Lea 1972; Smith and Abramson 1990; Cailliet 1992; Smith
2001). The current status of leopard shark populations in
Mexican waters is unknown (Compagno et al. 2005). The
genetic structure of this species has not been studied, and
very little is known about individual movement or potential
for philopatric behavior.

Philopatry, deWned as the successive use of native habi-
tat throughout the life cycle of an organism, has been
observed in numerous terrestrial and marine taxa, including
sharks (Hueter et al. 2005). The tendency to return to a
breeding locality in successive years (i.e., natal philopatry)
has been observed in at least seven species of sharks using
tagging, tracking, and genetic methods (reviewed by Hueter
et al. 2005). DiVerences in patterns of genetic variation
between males and females have provided evidence for
sex-speciWc philopatry in species that include white sharks
(Pardini et al. 2001), lemon sharks (Feldheim et al. 2002),
blacktip sharks (Keeney et al. 2003) and shortWn mako
sharks (Schrey and Heist 2003). Females of these species
often remain closer to their home territories, while males
roam farther away. In California, nine locations are sus-
pected breeding sites for leopard sharks: Humboldt Bay,
Tomales Bay, Bodega Bay, San Francisco Bay, Elkhorn
Slough, Morro Bay, Santa Monica Bay (Los Angeles), Cat-
alina Harbor (Santa Catalina Island), and San Diego Bay
(Talent 1985; Monaco et al. 1990; Smith and Abramson
1990; Ebert and Ebert 2005; Fowler et al. 2005; Smith
2005; G. Cailliet, personal communication; D. Ebert, per-
sonal communication; S. Smith, personal communication).
Six of these breeding locations were sampled during this
study and this information was later used to partition data
for tests of philopatry. Despite large aggregations occurring
periodically in coastal California (primarily during the
spring), the degree of philopatric behavior in leopard sharks
and the potential for sex-speciWc patterns are largely
unknown.

In this study, we use sequence data from the mtDNA
control region coupled with genotypic data from inter-sim-
ple sequence repeats (ISSRs) to assess variation among
leopard shark populations. The control region is commonly
used in studies of vertebrates as it is usually highly variable
and hypothesized to be selectively neutral (Meyer 1993).
Developed in 1994, ISSRs constitute the ampliWcation of
DNA fragments between simple sequence repeats through
the use of a single, anchored primer that binds to the tan-
dem repeat motif (Gupta et al. 1994; Zietkiewics et al.
1994). ISSRs are used to assess variation at numerous loci
throughout the nuclear genome. To date, ISSRs have not
been used to study the genetics of sharks, but they typically
yield large numbers of polymorphic loci in taxa such as

plants, fungi, invertebrates (Wolfe 2005) and at least one
teleost Wsh (Bay et al. 2006). ISSRs tend to be more repro-
ducible than some other dominant molecular markers,
require little prior genetic information on the species of
interest, and are time eYcient and cost eVective (Wolfe
2005).

We speciWcally focused on the following questions: (1)
Do leopard sharks function as one panmictic unit in Cali-
fornia waters? (2) Which populations warrant speciWc
attention, based on patterns of genetic structure? (3) Is there
genetic evidence for philopatric behavior in this species?
Answers to these questions will contribute to our current
understanding of the leopard shark Wshery in California and
aid in the future assessment and management of similar
Wsheries.

Materials and methods

Sampling

From October 2003 to August 2005, tissues from 169 leop-
ard sharks were obtained from 10 sites throughout Califor-
nia (20 individuals per site where possible). Tissue samples
from the northern portion of the study range were donated,
and samples from the Southern Bight were collected by the
Wrst author with others (see Acknowledgements). Size
(total length), sex, and location (GPS coordinates) were
recorded for each individual when possible. Sampling sites
(»25 km in diameter) were chosen by access and availabil-
ity. Fin clips were taken from the free rear tip region of the
Wrst dorsal Wn to prevent re-sampling and permanent injury
to released sharks. Wounds on leopard sharks heal over the
course of approximately 4 months (Reif 1978). To verify
the safety and eVectiveness of the Wn clipping technique,
three control individuals were kept in an aquarium at
Scripps Institute of Oceanography (La Jolla, CA, USA) and
monitored for 10 months from 2004 to 2005. Scar tissues
healed and remained visible on these sharks. After collec-
tion, tissues were stored in 95% ethanol for transport, trans-
ferred into a 1.5 ml tube, and stored at ¡80°C. All DNA
extractions were performed using a DNeasy kit (Qiagen),
which yielded 4,000–40,000 ng of DNA per Wn clip.

MtDNA methods

Prior to amplifying mtDNA, we designed novel primers to
target the entire control region of leopard sharks by align-
ing the mitochondrial genomes of six Chondrichthyan
Wshes and one teleost from Genbank (NIH) using Sequen-
cher 4.1.2 (Gene Codes Corporation); Scyliorhinus canicula
(NC_001950), Mustelus manazo (NC_000890), Heter-
odontus francisci (NC_003137), Chimaera monstrosa
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(NC_003136), Squalus acanthias (NC_002012), Raja radiata
(NC_000893) and the teleost Thunnus alalunga
(NC_005317). Our forward primer, CR1 (5�-CCTGCCC
TTGGCTCCCAAAGCCAAGATTC-3�) and reverse primer
CR2 (5�-TTACAATTAARACTAAGGCRAGGACCAA
A-3�) successfully ampliWed approximately 1,050 base
pairs of the control region gene in leopard sharks.

PCR ampliWcations were performed with a Wnal volume
of 25 �l as follows: 1 £ Taq Polymerase BuVer (No
MgCl2), 0.25 �M of each dNTP, 2.3 �M MgCl2, 0.48 �M
Primer “CR1”, 0.48 �M of Primer “CR2”, 0.6 �M BSA
(Invitrogen), 0.75 units of Platinum Taq Polymerase (Invi-
trogen), and 10–100 ng of DNA. AmpliWcations were per-
formed under the following conditions: 94°C for 2 min,
94°C for 30 s, 72°C for 1.5 min, followed by 39 cycles
of 94°C for 30 s, 72°C for 1.5 min, and a Wnal extension
of 2 min at 72°C. Successful mtDNA ampliWcations were
cleaned with a Qiaquick kit (Qiagen) and cycle sequenced
using BigDye (Applied Biosystems) on an ABI 377 auto-
mated sequencer. Sequence alignments were performed
using Sequencher 4.1.2 (Gene Codes Corporation).

ISSR methods

Sixty-Wve di-repeat ISSR primers with a single nucleotide
anchor at the 3� end (University of British Columbia
Nucleic Acid-Protein Service Unit, Primer Set #9) were
tested using relaxed PCR conditions of 2.8 �M MgCl2 and
50°C annealing temperatures. Thirty-eight of these primers
successfully ampliWed leopard shark DNA. After optimiza-
tion of PCR conditions, three primers reliably produced
polymorphic bands visible with agarose gel (2%) electro-
phoresis. Primers 808 (5�-(AG)8C -3�), 811 (5�-(GA)8C -3�),
and 818 (5�-(CA)8G -3�) were optimized for PCR reagents
and annealing temperature to the nearest 0.5°C using unla-
beled primers, and subsequently ampliWed in separate reac-
tions with Xuorescent dye-labeled primers compatible with
the Rox dye set (ABI). Primer 808 was labeled with NED
(yellow), primer 811 with VIC (green), and primer 818
with 6FAM (blue). All ISSR PCR ampliWcations were per-
formed with a Wnal volume of 25 �l using 1 £ Taq Poly-
merase BuVer (No MgCl2), 0.25 �M of each dNTP,
1.48 �M of MgCl2, 0.9 �M of unlabeled primer or 0.3 �M
of dye-labeled primer, 1.25 units of Platinum Taq Polymer-
ase (Invitrogen), and 5–50 ng of DNA. All ISSR PCR
ampliWcations were performed under the following condi-
tions: 94°C for 2 min, followed by 40 cycles of 94°C for
30 s, 59.2°C for 30 s (64°C for 818), 72°C for 2 min and a
Wnal extension at 72°C for 7 min. Positive and negative
controls were performed for each set of PCR ampliWca-
tions.

ISSR genotyping was performed on an ABI 3100 capil-
lary machine, with 1.0 �l of each dye-labeled PCR product

added to 11 �l of formamide and 0.75 �l of Rox 1000 size
standard (ABI). The presence or absence of a locus (deWned
as an observable band of dye on the chromatogram gener-
ated by the capillary machine) was determined using
GeneMapper 3.7 (ABI). To ensure accuracy and repeatabil-
ity, three positive control samples were genotyped Wve
times each for primers 808 and 811, and two positive con-
trol samples ten times each for primer 818. Any discrepan-
cies among positive controls for the presence or absence of
ampliWed DNA at a given locus resulted in our removing
that locus from the study. Based on estimates of precision
from these replicates and others, we were able to unambig-
uously size fragments to the nearest 1 bp. We converted
and combined genotype data for all individuals, primers,
and loci into binary code with “0” representing absence and
“1” representing the presence of ampliWed DNA.

Analyses of population structure

For mtDNA data, we quantiWed genetic structure among
sites as �ST (an analog of FST) using analysis of molecular
variance (AMOVA). Calculations were conducted in Arle-
quin 3.0 (ExcoYer et al. 2005), with the uncorrected num-
ber of pairwise diVerences between sequences as the
distance matrix and statistical signiWcance assessed using
10,000 permutations. Because ISSRs are dominant mark-
ers, it is not possible to distinguish between homozygous
dominant and heterozygous individuals, and therefore cal-
culate allele frequencies directly. As a result, we utilized
the null model of Hardy-Weinberg (H-W) random mating
genotype frequencies for ISSRs, as is commonly assumed
for dominant nuclear markers in diploid organisms. No
prior information exists that would justify rejecting the null
hypothesis of H-W frequencies in leopard sharks. Similar
species, such as Squatina californica (Gaida 1997), Muste-
lus antarcticus (Gardner and Ward 1998), and four other
Mustelus spp. (Gardner and Ward 2002) do not depart sta-
tistically from H-W assumptions with codominant markers
over spatial scales similar to the present study. Even if a
low degree of local preferential inbreeding occurs in leop-
ard sharks (i.e., if FIS > 0), we do not expect to see a
dramatic bias in estimates of population subdivision if the
pattern is consistent among sampling sites. We also
assumed that the use of a large number of ISSR loci distrib-
uted throughout the nuclear genome would overwhelm the
eVect of selection on any particular locus, if selection is
present. Thus, we accepted the assumption of random mat-
ing H-W genotype frequencies for the ISSR data for the
analyses that required this assumption.

To estimate ISSR variation within sampling sites, we
used Popgene 1.31 (Yeh et al. 1999) to calculate basic sum-
mary statistics including number of loci (number of bands
present in at least one individual), percent polymorphic
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loci, and allele frequencies (presence or absence of bands).
Because population (i.e., gene pool) boundaries for leopard
sharks are not clearly deWned by environmental features,
we quantiWed population structure using a variety of meth-
ods with diVerent assumptions. Nei’s (1972; 1978) unbi-
ased D was calculated between each pair of sites under the
assumption of H-W frequencies. We tested for patterns
of isolation by distance (IBD) by assessing the relationship
between (1) Nei’s unbiased D (ISSR data) versus
geographic distance, and (2) �ST (mtDNA data) versus
geographic distance using Mantel tests with the software
IBDWS 2.6 (Jensen et al. 2005; 10,000 randomizations).
Statistical signiWcance in the IBD relationship is commonly
assessed with Mantel Tests, but slope and intercept values
are rarely compared between species or sexes. We com-
pared slopes and intercepts from the IBD reduced major
axis regression by jackkniWng over populations in the
IBDWS program. (Note that although pairs of populations
are used when plotting the relationship, the unit of indepen-
dence for generating conWdence intervals and hypothesis
testing is the population.) Residuals from the IBD regres-
sions were also examined to determine whether one or a
few sites had undue inXuence; we repeated the analysis
excluding Humboldt Bay because it was genetically and
geographically the most divergent sample site. Additional
analyses of genetic population structure performed using
two other genetic distances (Roger’s distance and chord
distance) were qualitatively similar to Nei’s unbiased D and
are not presented here.

Overall ISSR divergence among all sites was quantiWed
as ��, an estimate of FST, using Hickory 1.0 (Holsinger
et al. 2002). This program uses a Bayesian algorithm
to estimate heterozygosity within each sampling site
(Table 1), which is subsequently used for estimates of ��. We
performed our analyses using the F-free model in Hickory,

which chooses inbreeding coeYcients randomly from a
non-informative prior during sampling, and thus requires
no assumptions regarding mating. We performed Bayesian
assignment tests using Bayesian Analyses of Population
Structure 3.2 (BAPS) to see how individuals cluster with-
out an a priori assumption of population membership
(Corander et al. 2005). A cluster is deWned as a grouping
of individuals based on genetic similarity; under model
assumptions of H-W genotype frequencies and linkage
equilibrium, a cluster is equivalent to a population or gene
pool. We speciWed the maximum number of clusters (k) as
169, our total number of samples, as we had no reason
a priori to assume any particular smaller number. Prelimi-
nary analyses with a similar program, STRUCTURE 2.1
(Pritchard et al. 2000) yielded results that were qualita-
tively similar in terms of individual cluster membership.
However, because likelihood values for k > 7 clusters failed
to approach a well-deWned asymptote in STRUCTURE, we
only present here the results of the BAPS analysis.

Finally, we used Alleles in Space (AIS) (Miller 2005) to
visualize spatial patterns of ISSR variation among individu-
als. Using geographic data (projected in Universal Trans-
verse Mercator) and the genetic distance scores calculated
in AIS, we created a three-dimensional landscape with
genetic distance in the z dimension. (The x and y axes sim-
ply correspond to cardinal directions.) Because AIS inter-
polates using residuals from an IBD regression across
individuals, a positive peak on the z axis will be found in a
geographic area where genetic divergence is unusually
high, after IBD is accounted for.

Tests for philopatry

To investigate the possibility of philopatry in leopard
sharks, we partitioned our genotype data by breeding site

Table 1 Leopard shark sampling sites, GPS coordinates of sampling sites (decimal degrees), sampling dates, breeding site status as indicated by
scientiWc literature, the number of males and females collected at each sampling site, and the total number of leopard sharks collected per site

Sampling site Latitude Longitude Date Breeding 
site?

No. of 
males

No. of 
females

No. of sex 
unknown

Sample 
size

Humboldt Bay 40.750 ¡124.210 N/A Yes N/A N/A 24 24

Tomales Bay 38.155 ¡122.949 6/06 Yes 1 2 0 3

San Francisco Bay 37.708 ¡122.279 3/04 to 8/05 Yes 4 10 6 20

Elkhorn Slough 36.800 ¡121.901 3/04 to 6/05 Yes 3 17 0 20

Santa Barbara 34.404 ¡119.864 5/04 to 6/04 No 2 3 0 5

Ventura 34.309 ¡119.362 10/03 to 6/04 No 12 1 4 17

Santa Catalina Island 33.317 ¡118.427 4/04 to 6/04 Yes 4 16 0 20

Los Angeles 33.793 ¡118.412 4/04 to 8/04 Yes 13 6 1 20

Carlsbad 33.144 ¡117.339 4/04 to 8/04 No 6 6 6 18

San Diego 32.678 ¡117.260 2/04 to 8/04 Yes 11 10 1 22

Totals 56 71 42 169
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status (to test for natal philopatry) and by sex (to test for
sex-speciWc philopatry). Individual leopard sharks that
were captured within 25 km of known breeding sites were
considered more likely contributors to the local gene pool
than individuals captured near other breeding sites or
>25 km away from any known breeding site. For these
analyses, we calculated the average genetic divergence of
each sampling site, estimated as the average pairwise Nei’s
unbiased distance to all other sampling sites. Within each
site, expected heterozygosity was used as a measure of
overall genetic variation.

For both average genetic divergence and overall genetic
variation, we used Siegel–Tukey tests (Neave and Wor-
thington 1988) to test for diVerences in variance between
breeding sites and non-breeding sites. Breeding sites would
be expected to have higher variance than non-breeding sites
if individuals at breeding sites primarily represent one gene
pool (strict philopatry), and individuals at non-breeding
sites represent transients from many gene pools. In the case
of strict philopatry, we also expected the mean estimate of
genetic divergence to be higher for breeding sites than for
non-breeding sites, since individuals at non-breeding sites
are more likely to represent multiple gene pools.

When the ISSR genotype data were partitioned by sex,
127 individuals were included from nine sampling sites,
with both sexes represented at these sites (total of 56 males,
71 females). We tested for diVerences among males and
females in IBD slopes and intercepts and the Bayesian esti-
mates of diVerentiation �� by comparing 95% conWdence
intervals between the sexes. IBD conWdence intervals were
estimated by jackkniWng over populations in IBDWS (Jen-
sen et al. 2005), and CIs for �� were calculated in Hickory
(Holsinger et al. 2002). In the case of strict sex-speciWc
philopatry, sedentary females should display greater genetic
divergence, as measured by pairwise genetic distance,
overall �� and IBD slope and/or intercept.

Results

Mitochondrial sequences in the forward direction yielded
600 bp after alignment and trimming of ambiguous ends.
Five haplotypes (k = 5) and four polymorphic nucleotide
sites (s = 4) were found. G/A substitutions occurred in 11
individuals and T insertions occurred in three individuals.
The number of substitutions per site was very low
(� = 0.0067), and one rare haplotype occurred only in
Humboldt Bay (Haplotype A, Table 2). The greatest num-
ber of haplotypes found in leopard sharks from one sam-
pling site was four, which occurred in Los Angeles.

For the ISSRs, primer 808 produced 49 polymorphic loci
(i.e., fragments of DNA) ranging from 57 to 493 bp in
length, and no monomorphic loci. Primer 811 produced 20
polymorphic loci and 1 monomorphic locus ranging from
89 to 447 bp. Primer 818 produced 22 polymorphic loci
from 69 to 495 bp in length and no monomorphic loci. Our
three ISSR primers produced a total of 91 polymorphic loci
and one monomorphic locus (98.9% polymorphism). We
excluded 14 of the 91 polymorphic loci from analyses due
to discrepancies among one or more positive control repli-
cates. The frequency of DNA ampliWed at a given locus
ranged from 0.003 to 0.9585 for all individuals at all loci.
The number of loci and expected heterozygosity were high-
est in Los Angeles and Humboldt Bay (Fig. 1).

Population structure

For both sets of molecular markers, populations showed
signiWcant structure [mtDNA �ST = 0.069 (P = 0.01) and
ISSR �� = 0.110 (95% CI: 0.088, 0.139)]. Patterns of
mtDNA IBD were not statistically signiWcant, as �ST was
not correlated with geographic distance across population
pairs (P = 0.54). This may have been due to low levels of
mtDNA variation. For the ISSRs, Nei’s unbiased genetic

Table 2 Summary statistics 
from ISSR and control region 
(mtDNA) data by sampling site. 
Heterozygosity estimates with 
standard deviation and BAPS 
cluster assignments found in 
leopard sharks from each sam-
pling site as calculated using 
ISSR data. mtDNA haplotype 
letters correspond to unique 
haplotypes and the number 
of leopard sharks per sampling 
site with each haplotype in 
parentheses

Sampling site Sample 
size

ISSR data Contol region (mtDNA)

He SD Cluster (BAPS) Haplotype (s)

Humboldt Bay 24 0.129 0.007 1, 3 A (1), E (23)

Tomales Bay 3 0.113 0.009 2, 4 ,5 E (3)

San Francisco Bay 20 0.115 0.006 1, 2, 3, 5 E (20)

Elkhorn Slough 20 0.093 0.007 2, 3, 4, 5 E (20)

Santa Barbara 5 0.104 0.008 3, 5 E (5)

Ventura 17 0.099 0.006 3, 4, 5, 6 D (1), E (16)

Santa Catalina Island 20 0.104 0.006 3, 4, 5 B (2), D (1), E (17)

Los Angeles 20 0.125 0.006 3, 4, 5, 6, 7 B (1), C (3), D (3), E (13)

Carlsbad 18 0.106 0.006 3, 4, 5 C (1), E (17)

San Diego 22 0.098 0.005 2, 3, 4, 5 D (1), E (21)

Average He 169 0.109 0.003
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distance ranged from 0.0006 to 0.076 between site pairs,
and log (Nei’s unbiased D) increased with the geographic
distance between sites [(r = 0.18), P = 0.002; y = 0.0015x
¡ 2.62; Fig. 2a]. These results did not change qualitatively
when the most divergent sampling site (Humboldt Bay)
was removed [(r = 0.15), P = 0.005; y = 0.0018x ¡ 2.73;
Fig. 2b]. The average residuals from the log-transformed
IBD relationship were highest for the contrast between San
Francisco and Tomales Bay, indicating that these popula-
tions are unusually divergent. The lowest residuals were for
the San Diego versus Los Angeles contrast, indicating atyp-
ically high genetic similarity (Fig. 3).

Patterns of ISSR population structure were explored fur-
ther using the AIS interpolation surface, with positive and
negative peaks reXecting genetic divergences that were
unusually high or low, after correcting for IBD (Fig. 4).
The most prominent positive peak was observed between
Humboldt Bay and Tomales Bay in northern California
(Fig. 4a). Leopard sharks sampled from San Francisco Bay
were more similar genetically to those from Elkhorn
Slough than Tomales Bay (Fig. 4b). Further south on the
genetic landscape, a series of three negative peaks were
observed (Fig. 4c). These peaks corresponded to unusually
high connectivity between Elkhorn Slough and three

Fig. 1 ISSR summary statistics by sampling site. a Number of ISSR
loci. b Expected heterozygosity (ISSR data) + 1 SD. Sampling sites are
abbreviated from North to South using the following abbreviations:
HB = Humboldt Bay, TB = Tomales Bay, SF = San Francisco,
ES = Elkhorn Slough, SB = Santa Barbara, VN = Ventura, CT = Santa
Catalina Island, LA = Los Angeles, CR = Carlsbad, SD = San Diego

0

20

40

60
N

u
m

b
er

 o
f l

o
ci

 (I
SS

R 
d

at
a)

0.00

0.04

0.08

0.12

E
xp

ec
te

d 
H

et
er

oz
yg

os
ity

 (
±

SD
)

Sample Sites
 HB   TB   SF   ES   SB   VN   CT   LA   CR   SD

Fig. 2 Isolation by distance (IBD) plots for ISSR data. a Log genetic
distance (Nei’s unbiased D) versus Euclidean geographic distance
including all sampled individuals. b Log genetic distance (Nei’s unbi-
ased D) versus Euclidean geographic distance excluding all individuals
sampled in Humboldt Bay, CA, USA

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0 A

B

0 200 400 600 800 1000 1200

Lo
g

 (N
ei

’s 
U

n
b

ia
se

d
 D

)

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

0 200 400 600 800 1000 1200

Euclidean Geographic Distance (km)

Fig. 3 Average pairwise genetic distances between individual leopard
sharks from diVerent sampling sites. These distances are unbiased
Nei’s distance residuals from the log-transformed IBD relationship of
ISSR data. Sampling sites are abbreviated as in Fig. 1

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

A
ve

ra
ge

 U
nb

ia
se

d 
N

ei
’s

 D
 R

es
id

ua
ls

 (
±

SD
)

 HB     TB     SF     ES     SB     VN     CT

Sample Sites

     LA     CR     SD
123



Mar Biol (2007) 152:599–609 605
sampling sites in southern California. Several positive
peaks occurring within southern California were a result of
genetic discontinuity between Santa Catalina Island and
three other sampling sites: Santa Barbara, Los Angeles, and
Carlsbad (Fig. 4d).

The BAPS analysis assigned individuals to seven genetic
clusters without the use of sample site information
(¡ln k(7) = 5246, P > 0.999 compared with other values of
k). Clear patterns were observed when individuals were
subsequently sorted by cluster and sampling site (Fig. 5).
For example, cluster 1 was comprised only of leopard
sharks collected north of San Francisco Bay (Fig. 5a). Indi-
viduals in cluster 2 were found north of Elkhorn Slough,
except for one individual in San Diego which may have
represented a transient individual (Fig. 5b, d). Clusters 3, 4
and 5 were relatively evenly distributed among sample
sites. In contrast to northern California, sample sites south
of Ventura tended to contain individuals that represented
more gene pools. In addition, clusters 6 and 7 were unique
to Los Angeles and Ventura (Fig. 5c). Los Angeles con-
tained the highest number of ISSR-deWned gene pools,
which paralleled its relatively high diversity of mtDNA
haplotypes.

Philopatry

For ISSR data, the average pairwise estimate of Nei’s unbi-
ased distance was more variable among breeding sites than
among non-breeding sites (Siegel-Tukey test, U = 0,
P · 0.02). This was consistent with the hypothesis that

samples from non-breeding sites represented more than one
gene pool. Within-site heterozygosity was also more vari-
able among breeding sites than non-breeding sites, although
the contrast was not quite signiWcant (Siegel-Tukey test,
U = 4, P > 0.10).

Nei’s unbiased D showed a signiWcant pattern of IBD for
males [Fig. 6a: (r = 0.279), P = 0.008, y = 0.0011x ¡ 2.15],
but the IBD slope for females was not signiWcantly diVerent
from 0 [Fig. 6b: (r = 0.05), P < 0.10, y = 0.000254x ¡ 1.71].
It is possible that the IBD slopes or intercepts could diVer
between sexes, even if the slope of the female relationship is
not signiWcant. However, no aspect of the IBD relationship
diVered between the sexes. For example, the IBD plot for
males had a slope of 0.00253 (95% CI: 0.00127, 0.00378)
and an intercept of ¡2.69 (95% CI: ¡3.28, ¡2.10), whereas
the IBD plot for females had a slope of 0.00113 (95% CI:
0.00083, 0.00143) and an intercept of ¡2.03 (95% CI:
¡2.20, ¡1.86). The Bayesian estimate of overall genetic
divergence (ignoring possible IBD) was twice as high in
females (�� = 0.109) as in males (�� = 0.050). However,
this contrast was not statistically signiWcant either (95% CI:
0.082, 0.161 and 0.028, 0.092, respectively).

Discussion and conclusions

Both traditional and newer types of population genetic
analyses demonstrate that multiple, signiWcantly structured
populations of leopard sharks exist in California waters. In
this Wrst application of ISSRs to cartilaginous Wshes, these

Fig. 4 Alleles In Space interpo-
lation plot for ISSR data. UTM 
(northing) is on the y axis, UTM 
(easting) is on the x axis and 
residual genetic distance (Nei’s 
unbiased D) on the Z axis. Posi-
tive “peaks” represent high ge-
netic discontinuities and 
negative peaks represent high 
genetic similarities. Letters A 
through D correspond to regions 
of speciWc interest (see text)
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genetic markers proved useful in quantifying population
structure. We rejected the null hypothesis that leopard
sharks form one panmictic population in California waters,
and found evidence that both spatially limited gene Xow
and proximity to breeding sites may contribute to this struc-
ture. Thus, dispersal and gene Xow in this species are lim-
ited in comparison to the scale of this study. The isolated
gene pools that we have identiWed will likely warrant sepa-
rate attention from a Wsheries management perspective.

Estimates of population subdivision were comparable in
the two types of genetic markers (mtDNA �ST = 0.069,
ISSR �� = 0.110), and comparable to sympatric species
such as the PaciWc angel shark (mtDNA FST = 0.09: Gaida
1997) and shovelnose guitarWsh (mtDNA FST = 0.23: Sand-
oval-Castillo et al. 2004). SpeciWc comparisons among
genetic markers from diVerent studies depend on inheri-
tance patterns, mutation rates and sampling schemes (e.g.,
mtDNA has particularly low mutation rates in most sharks:
Martin et al. 1992). Although these studies provide very
limited information regarding the range of individual
sharks for activities other than breeding, this growing body
of evidence suggests that elasmobranch gene pools are not
necessarily panmictic along the PaciWc coast of North
America.

In addition to general patterns of IBD, the landscape
genetics visualization highlights potential dispersal barriers
along the coast of California. Although the precise location
of many potential barriers cannot be known without addi-
tional sampling focused in these areas, both this analysis
and the assignment test suggest the presence of seven gene
pools between Humboldt Bay and San Diego, CA, USA.
All analyses agreed that leopard sharks in Humboldt Bay
are particularly isolated. Humboldt Bay is near or at the
northern extent of the leopard shark’s range, potentially
limiting its accessibility to dispersing individuals. In addi-
tion, leopard sharks from Humboldt Bay may exhibit life
history traits diVerent from leopard sharks in other popula-
tions. For example, Webber (2003) suggested that female
leopard sharks in Humboldt Bay mature at a larger size and
have lower fecundity than leopard sharks elsewhere. This
would change the eVective population size and overall gen-
eration time within the population, and possibly create
reproductive or developmental incompatibilities with other
populations. Together with our genetic data, this study sug-
gests that Humboldt Bay may represent a model for future
studies of incipient peripatric speciation in elasmobranchs
(sensu Mayr 1954) or as an example of local adaptation.
Further study of the underlying processes will be needed to

Fig. 5 BAPS cluster percent-
ages by sampling site with all 
sampled individuals included. 
Letters A through D correspond 
with regions of speciWc interest 
(see Fig. 4 and text)
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determine whether the unique aspects of Humboldt Bay
leopard sharks represent a natural, long-term phenomenon
or whether management plans should attempt to reverse rel-
atively recent isolation of this population.

In contrast to Humboldt Bay, the Los Angeles site
appears to represent a region of transition for leopard
sharks. Leopard sharks found in this area need to travel rel-
atively short distances to known mating grounds. The aver-
age IBD residuals are very low in comparison to most other
sampling sites, indicating high genetic connectivity which
is best explained by the sampling of transient individuals
from many gene pools. Further support for this hypothesis
is provided by relatively high ISSR expected heterozygos-
ity estimates in Los Angeles, a large number of ISSR clus-
ters, and a large number of mtDNA haplotypes.

Although this study found only limited support for natal
philopatry, breeding site status and proximity to other
breeding sites does appear to structure patterns of genetic
variation in leopard sharks. Precise interpretations are

hampered by a limited knowledge of historical breeding
sites from throughout the range of this species, and the pos-
sibility that some of these sites have been extirpated. We
cannot separate the eVects of natal philopatry (limited gene
Xow) from other microevolutionary processes (e.g., genetic
drift, selection), even though it is clear that non-breeding
sites are more genetically homogeneous than breeding sites.
We did not Wnd statistically signiWcant diVerent patterns of
philopatry among sexes. However, a better understanding
of individual movement patterns and reproduction cycles
from future studies (e.g., tagging and tracking data) would
facilitate more reWned hypothesis testing using genetic data
(Hueter et al. 2005).

Through implementation of a molecular marker that is
novel for sharks, the results of our study provide answers to
several basic questions regarding the genetic population
structure of T. semifasciata. Despite the inherent challenges
of working in a habitat without clearly deWned boundaries,
and a slowly evolving species that is highly mobile (Smith
1984; Hopkins and Cech 2003; Smith et al. 2003; B. Zei-
gler, personal communication; A. Carlisle, personal com-
munication), we were able to determine that multiple
leopard shark gene pools exist in California. Humboldt Bay
is a site of special interest due to its genetic and likely eco-
logical isolation. In contrast, Los Angeles appears to be a
site of transition among gene pools, emphasizing that popu-
lation boundaries can be diVuse in areas where breeding
does not take place. We suggest that leopard shark popula-
tions be managed as multiple regional management units,
with special attention given to the preservation of breeding
sites for both population replenishment and to prevent pop-
ulation fragmentation. Because larger sharks generally have
a higher fecundity than smaller sharks (Ebert and Ebert
2005), it is possible that genetically isolated populations of
leopard sharks could beneWt from the protection of larger
individuals. This may be achieved, for example, by increas-
ing the minimum length requirement or decreasing the bag
limits permitted to commercial and recreational Wshermen.
As a caveat to these recommendations, we note that it is
currently unclear what proportions of population subdivi-
sion are historical rather than a result of recent population
declines and extirpations. The utility of mtDNA to infer
recent versus prehistoric processes in some types of genetic
analyses (e.g., Templeton 1998) is limited in this species by
low mutation rates. In addition, an increased sample size
may result in increased resolution for some analyses.

Logically, a next step would be to identify all historical
breeding sites throughout the entire species range from
Oregon to Mexico. If possible, the genetic analysis of his-
torical samples would help to accurately interpret contem-
porary genetic structure and the current scarcity of leopard
sharks from the range boundaries. In addition, the speciWc
mechanisms by which leopard shark populations are

Fig. 6 Log genetic distance (Nei’s unbiased D) versus Euclidean
geographic distance between pairs of sample sites. a IBD plot for
males. b IBD plot for females
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structured should be investigated further, as these mecha-
nisms are likely to aVect other elasmobranchs and a suite of
other marine species. For example, Duncan et al. (2006)
recently discovered that populations of scalloped hammer-
head sharks are signiWcantly structured with regard to
ocean basin, with some indications of philopatric behavior.
Continued research on shark population structure at a vari-
ety of scales will help to ensure the persistence of this frag-
ile component of the world’s Wsheries.

Elasmobranch populations are declining at an unprece-
dented rate worldwide, which necessitates the development
of cost and time eVective methods for answering basic
questions about the population structure of these Wshes. The
techniques described here meet these goals and set the stage
for future eVorts in elasmobranch population genetics, and
by extension global Wsheries management.
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