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Abstract

The misfolding of nascent proteins, or the unfolding of proteins after synthesis is complete, can occur in response to numerous environmental
stresses, or as a result of mutations that de-stabilize protein structure. Cells have developed elaborate protein quality control systems that recognize
improperly folded proteins and either refold them or facilitate their degradation. One such quality control system is the unfolded protein response,
or the UPR. The UPR is a highly conserved signal transduction system that is activated when cells are subjected to conditions that alter the
endoplasmic reticulum (ER) in ways that impair the folding of nascent proteins in this organelle. Recent observations indicate that in the heart, the
UPR is activated during acute stresses, including ischemia/reperfusion, as well as upon longer term stresses that lead to cardiac hypertrophy and
heart failure. Moreover, certain aspects of the UPR are activated during, and are required for proper heart development. This review summarizes
recent studies of the UPR in the heart, focusing on the possible roles of the UPR in contributing to, or protecting from ischemia/reperfusion
damage.
© 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The function of most proteins depends on their three-di-
mensional conformation, which requires correct folding. The bulk
of cellular protein synthesis takes place on cytosolic free ri-
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bosomes. However, depending on the cell type, up to 35% of
protein synthesis is in the rough endoplasmic reticulum (ER),
which is where all secreted proteins, as well as proteins that are
targeted to membranes and organelles, are synthesized [1]. Under
optimal conditions, numerous chaperones and other proteins and
factors ensure efficient nascent protein folding; however, per-
turbation of folding machinery components decreases pro-
tein folding efficiency. Initially, the accumulation of misfolded
proteins triggers biochemical events designed to augment protein
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Fig. 1. The unfolded protein response: (A) Under non-stressed conditions, proteins
that are synthesized in the rough ER are efficiently folded. The ER-resident
molecular chaperone, glucose-regulated protein-78 (GRP78), is associated with the
luminal domains of the 3 proximal effectors of the unfolded protein response (UPR),
PKR-like ER kinase (PERK), inositol-required enzyme-1 (IRE-1) and activating
transcription factor-6 (ATF6). Under these conditions, these 3 UPR effectors are
inactive in terms of activating downstream effects of the UPR. (B) Stresses that
perturb the redox status of the ER lumen, alter ER calcium levels, or disrupt the ER
protein glycosylation machinery, result in the accumulation of mis-folded,
dysfunctional proteins in the ER lumen, which initiates ER stress. Upon ER stress,
GRP78 translocates from the luminal domains of PERK, ATF6 and IRE-1 to the
misfolded proteins in the ER lumen in an effort to assist in folding. Under these
conditions, PERK, ATF6 and IRE-1 and ATF6 are activated. (C) The PERK, ATF6
and IRE-1 branches of the UPR each mediate the transcriptional induction of ER
stress response genes via the transcription factors, ATF4, ATF6 and XBP1,
respectively. In addition, PERKcanmediate global translational arrest by phosphor-
ylation eIf2α, and IRE-1 can mediate the activation of JNK and caspase-12.
Translational arrest decreases the workload on the ER, allowing time for recovery;
however, the mRNAs encoded by many ER stress response genes have evolved
structural features that allow them to escape this translational arrest, which is
important for the upregulation of ER stress response proteins upon acute stress. The
JNK and caspase-12 branches of the UPR contribute to programmed cell death that
takes place upon chronic ER stress. Many ER stress response genes encode ER-
targeted chaperones, and other ER proteins that are designed to stabilize and/or re-
establish an ER luminal environment that is suitable for nascent ER protein folding,
facilitating cell survival and recovery from acute ER stress (Survival/Recovery).
However, if the stress is not resolved, ER stress response genes induced upon
chronic stress lead to apoptotic cell death (Apoptosis).
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folding capacity. However, the continued accumulation of ter-
minally misfolded proteins leads to their degradation by a well-
studied protein quality control system, involving recognition,
ubiquitination and degradation by proteasomes and, eventually,
to cell death. Protein quality control systems are located in se-
veral cell compartments including the cytosol and the ER; several
reviews of the cytosolic protein quality control system in the heart
have recently appeared [2,3]. Accordingly, this review focuses on
ER-associated protein quality control system, also known as the
unfolded protein response (UPR).

2. The unfolded protein response

The unfolded protein response (UPR) is a conserved signal
transduction system that is activated by stresses that impact
the efficiency of protein folding in the rough ER [4–7].
Optimal protein folding in the ER depends on maintaining the
proper balance of numerous components in the ER that
contribute to folding of proteins during synthesis. For
example, the correct ER redox status is required for protein
disulfide bond formation, which is an oxygen-requiring
process. Also, maintenance of suitable levels of protein
glycosylation substrates, as well as sufficient glycosylation
enzymatic machinery, is required, since most proteins made in
the ER are glycosylated. Finally, ER calcium and ER-resident
chaperones must be present at the levels that facilitate optimal
folding of nascent ER proteins.

Experimentally, the ER environment can be perturbed by
substances, such as dithiothrietol, thapsigargin, or tunicamycin,
which alter redox status, calcium levels and protein glycosyla-
tion in the ER, respectively [4,8–10]. When cells are treated
with one of these compounds, or if they are starved of glucose
and oxygen, the latter of which mimics ischemia, ER protein
folding is impaired, and the accumulation of mis-folded, dys-
functional proteins signals the initiation of ER stress [11].

ER stress is initially sensed by the 3 ER transmembrane
proteins, protein kinase R-like ER kinase (PERK) [12], ac-
tivating transcription factor-6 (ATF6) [13,14] and inositol-
requiring enzyme-1 (IRE-1) [15,16], which serve as the primary
proximal effectors of the UPR. Numerous studies in yeast, as
well as mammalian cell lines and a few tissues, have contributed
considerably to our understanding of the mechanisms of action
of each of these effectors. Several excellent reviews report on
the results of these studies [17]; accordingly, the following is a
summary of the mechanisms by which these effectors sense
ER stress and mediate downstream signals.

When ER protein folding is functioning efficiently, the
ER luminal domains of PERK, ATF6 and IRE-1 are bound to the
abundant ER-resident chaperone, glucose-regulated protein 78
(GRP78). Under these conditions, these proximal effectors of the
UPR are inactive (Fig. 1A). However, when ER protein folding
is disrupted, and misfolded proteins begin to accumulate,
GRP78 translocates from PERK, IRE-1 and ATF6 to the
misfolded proteins in an apparent effort to aid in folding [18–
22]. This translocation of GRP78 leads to the activation of all 3
proximal effectors of the UPR (Fig. 1B) and is considered one of
the earliest signs of ER stress. Once activated, the 3 proximal
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effectors of the UPRmediate the downstream, or distal effects of
ER stress.

3. Proximal effectors of ER stress (PERK, IRE-1 andATF6)

3.1. PERK

PERK is a transmembrane ER protein; upon ER stress, and
the relocation of GRP78 from the luminal domain of PERK to
misfolded proteins, and the subsequent homodimerization of
PERK, lead to trans-autophosphorylation, much like activated
growth factor receptors. This autophosphorylation activates
PERK, further, which phosphorylates the ribosomal protein,
eIF2α. Phosphorylation of eIF2α decreases its efficiency as an
initiator of translation, which leads to decreased translation of
most cellular mRNAs (Fig. 1C; translation arrest) [18]. This
translational arrest, which is transient, reduces the protein syn-
thesis load in the ER, facilitating recovery of ER homeostasis
and the re-establishment of efficient ER protein folding [23].
Although most mRNAs are inefficiently translated upon PERK
activation, paradoxically, the mRNA that encodes activator of
transcription factor-4 (ATF4) is translated more efficiently when
eIF2α is phosphorylated. This leads to increased levels of
ATF4, which serves important roles as a transcriptional inducer
of a certain ER stress response genes, such as those that encode
amino acid transporters, which assist in the recovery from the
stress (Fig. 1C; ATF4).

3.2. IRE-1

Much like PERK, IRE-1 is an ER transmembrane protein,
which, upon ER stress, forms homodimers which facilitate trans-
autophosphorylation. However, in contrast to PERK, upon
ER stress, IRE-1 exhibits a novel endoribonuclease activity,
which splices the mRNA that encodes active x-box binding
protein-1 (XBP1). This unusual splicing event, which takes
place in the cytosol, generates a transcript with a new open
reading frame that encodes the expression of an active form of
XBP1, a basic leucine-zipper (bZip) transcription factor that
induces numerous ER stress response genes (Fig. 1C; IRE1
XBP1) [21,24].

3.3. ATF6

Like PERK and IRE-1, ATF6 is an ER transmembrane
protein that also exists as a dimer in association with GRP78
under non-stressed conditions. In further comparison, upon
ER stress GRP78 dissociates from the ER luminal domain of
ATF6. However, in contrast to the other two effectors, which
remain associated with the ER, ATF6 relocates to the Golgi,
where two proteases, site-1 and site-2 proteases, cleave it in, or
near the transmembrane region. After these cleavage events, the
cytosolic region of ATF6, which has several putative nu-
clear localization signals, translocates to the nucleus where it
can form homodimers or heterodimers with a small group of
bZip transcription factors, which includes XBP1, leading to the
transcriptional regulation of ER stress response genes (Fig. 1C;
ATF6) [25,26]. A second isoform of ATF6, ATF6β [27], as well
as other ATF6-related proteins, such as Oasis [28], Luman
[29,30], CREB4 [31], CREB-H [31] and BBF2H7 [32], have
since been discovered. Like ATF6, all of these isoforms are
ER transmembrane proteins that are cleaved and translocate to
the nucleus upon ER stress. Moreover, in theory, each has the
ability to dimerize with other members of this bZip transcription
factor family. Although the exact roles of these ATF6 isoforms
are not completely known, it appears as though ATF6β has less
ability to induce ER stress response genes than ATF6 [33] and
may even serve as an inhibitor of ATF6 [34,35]. Additionally,
some of the other isoforms exhibit tissue-restricted expres-
sion patterns, implying that they may contribute to mediating
ER stress in a cell-type-specific manner.

4. Distal effectors of the UPR

Many of the XBP1 and ATF6 inducible genes that have been
characterized to date can be induced by either transcription
factor. Thus, there is a great deal of redundancy between these
twoUPR pathways, although the reasons for this redundancy are
not yet clear. However, the recent development of ATF6 knock
out mice has clarified the existence of numerous ER stress
response genes that are dependent upon ATF6 for maximal
induction during ER stress [33]. Most of the genes induced by
XBP1 and/or ATF6 encode mRNAs with structural features
allowing them to escape PERK-mediated translational arrest.
Genes induced upon acute ER stress encode proteins that
improve the folding of nascent proteins in the ER lumen and
facilitate the degradation of dysfunctional misfolded proteins.
The degradation of terminally misfolded ER proteins is
performed by ER-associated protein degradation or ERAD.
ERAD is a complex process involving the recognition of mis-
folded ER proteins, followed by the retrotranslocation of these
proteins across the ERmembrane to the cytosolic face of the ER.
Protein degradation machinery, located on the cytosolic face of
the ER, is dedicated to the ubiquitination and proteasome-
mediated degradation of terminally misfolded ER proteins [36–
38]. Together, the ER luminal and ERAD-associated proteins
function to resolve the ER stress, fostering the recovery of
efficient ER protein folding and cell survival (Fig. 1D; Survival/
Recovery).

If the UPR signals activated in the early phases of ER stress
are not sufficient to resolve the stress, continued activation of
the proximal effectors leads to the upregulation of a different
collection of UPR-inducible proteins (Fig. 1D; Apoptosis), as
well as the activation of other signaling pathways, that combine
to promote cell death (Fig. 1C; JNK and caspase-12) [39,40].
ER stress can also promote cell death in collaboration with
the mitochondrial apoptosis pathway. For example, ER stress
causes the release of cytochrome c [41]. Moreover, the pro-
apoptotic Bcl-2 family members, Bax and Bak, associate with
the ER, where they activate IRE1, thus linking mitochondrial
and ER-mediated apoptotic pathways [42]. Accordingly, the
strength and duration of the ER stress contribute to determining
the ultimate role of the UPR as either a survival or a death-
oriented signaling pathway.



456 C.C. Glembotski / Journal of Molecular and Cellular Cardiology 44 (2008) 453–459
One of the most studied ER stress response genes is GRP78,
which is also expressed in many cell types under non-stressed
conditions, but upon activation of the UPR, is induced further.
The GRP78 promoter has ER stress response elements (ERSEs)
that bind XBP1 or ATF6, which is required for transcriptional
induction during ER stress [14,43,44]. Like GRP78, most of the
other ER stress response genes that have been characterized also
have ERSEs [45], indicating that this transcriptional induction
mechanism is highly conserved among genes that are induced
during the UPR. Increased expression of GRP78 during the
UPR enhances the protein folding capacity in the ER; if the load
of misfolded proteins is reduced via this mechanism, by binding
to the proximal effectors of ER stress, GRP78 contributes to
inactivating the UPR, signaling resolution of the stress.
Moreover, it was shown that during long-term ER stress,
GRP78 redistributes from the ER to other locations, including
the cytosol, where it can bind to and prevent the release of
caspase-12 from the ER, thus inhibiting the apoptotic phase of
the UPR [46].

5. Ischemia as an activator of the UPR

Although studies employing chemicals to induce ER stress
in cultured cells and, in a few cases, in vivo, have been useful
in delineating the molecular details of the UPR, such con-
ditions are relatively extreme and are not likely to represent
physiologically meaningful stresses. In contrast, the lack of
oxygen and nutrients that take place during ischemia are known
to affect the ER environment in ways predicted to activate the
UPR. For example, glucose deprivation was one of the first
maneuvers shown to activate the UPR, probably by impeding
protein glycosylation in the ER, thus mimicking the effects of
tunicamcyin [9,10]. GRP78 was named a glucose-response
protein based on its induction in cultured cells subjected to
glucose starvation [47,48]. Additionally, the machinery respon-
sible for disulfide bond formation in the ER requires molecular
oxygen for proper function [49].

Some of the earliest studies on the effects of ischemia/re-
perfusion on the UPR were carried out in the brain. For exam-
ple, it was shown that in ischemic rabbit brain, several features
of the UPR were activated, including PERK, eIF2α phosphor-
ylation, translational arrest and XBP1 mRNA splicing [50].
Moreover, ischemic pre-conditioning in the brain has been
shown to induce GRP78 and to protect from further ischemic
damage [51]. Gene array studies have shown that transient
cerebral artery occlusion increases the expression of numerous
UPR-dependent genes in the brain [52]. In addition to brain,
numerous studies of the UPR have been carried out in tumors
and cancer cell lines. For example, the UPR was shown to be
activated in ischemic regions of tumors and in cultured tumor
cells subjected to hypoxia; in both contexts, UPR activation was
protective [53]. As a result of numerous studies in the tumor cell
context, it has been suggested that the UPR provides a selective
advantage to some aggressively growing solid tumors, where
the rate of growth sometimes surpasses neo-angiogenesis, lea-
ding to ischemia and activation of the UPR [54]. In this con-
text, since the UPR protects the growing tumor, and has been
shown to contribute to malignant progression, the therapeutic
strategy has been to inhibit the UPR in order to moderate tumor
growth [55].

The demonstration that the UPR is activated in hypoxic
tumor cells and tissue, as well as is the ischemic brain, prompted
studies of whether the UPR is activated by ischemic in the heart,
or by simulated ischemia in cultured cardiac myocytes. GRP78
was shown to increase in mouse hearts subjected to ex vivo
ischemia/reperfusion, as well as in surviving cardiac myocytes
that border the infarct zone in a mouse model of in vivo my-
ocardial infarction [56]. Another study showed that GRP78
was induced and XBP1 was activated in hearts subjected to
ischemia/reperfusion in vivo [57]. Transgenic overexpression of
monocyte chemoattractant protein-1 (MCP-1) in mouse hearts
was shown to induce ischemic heart disease and increase the
expression of numerous ER stress response genes, including
GRP78 [58]. Also, a number of ER stress response genes,
including protein disulfide isomerase, were shown to be in-
duced in the peri-infarct zone in a mouse model of myocardial
infarction [59]. Several studies have shown that simulating
ischemia or ischemia/reperfusion in cultured neonatal rat or
adult mouse ventricular myocytes, or in the HL-1 atrial myo-
cyte cell line, activates XBP1 and increases the expression of
GRP78, and other genetic markers of the UPR [56,57,59–61].

Thus, ischemia and ischemia/reperfusion activate numerous
features of the UPR in cardiac myocytes in vivo and in vitro;
however, in contrast to studies in tumor cells and in the brain,
where ER stress has been shown to be protective, it is less clear
what function the UPR serves in the cardiac context. Some
studies support protective roles for the UPR; for example, pre-
activation of ATF6 in the hearts of transgenic mice was shown
to protect the heart from ischemia/reperfusion damage [62],
suggesting that under these conditions, genes induced by the
ATF6 branch of the UPR served protective functions. Also,
adenoviral-mediated overexpression of the ER stress response
gene for protein disulfide isomerase decreased the size of
infarcts in mouse hearts subjected to in vivo coronary artery
ligation [59]. In other studies, it was shown that upregulation of
GRP78 during ischemic pre-conditioning is responsible for
protecting cultured cardiac myocytes from further ischemic
injury [63], and that preinducing ER stress response genes with
tunicamycin protects H9c2 cardiomyocytes from death induced
by simulated ischemia/reperfusion [64]. It has also been shown
that overexpression of the ER stress response gene, GRP94,
protects cultured cardiac myocytes from death in response to
simulated ischemia [65]. Taken together, these studies suggest
that when the UPR is activated in the heart during ischemia, or
ischemia/reperfusion, it may contribute to a protective stress
response mounted by cardiac myocytes.

In contrast to the studies cited above, other results support
the possibility that the UPR may contribute to ischemia/reper-
fusion damage in the heart. In cultured cardiac myocytes, it was
shown that AMP kinase and ER stress were both activated
during simulated ischemia, and that in this context, by inhibiting
ER stress, AMP kinase protected the cells from hypoxic injury
[60]. ER stress has been shown to activate autophagy-mediated
cell death cardiac myocytes subjected to simulated ischemia/
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reperfusion [66]. Additionally, in cultured cardiac myocytes,
ER stress leads to the activation of PKC delta, but that inhibiting
delta PKC activation decreases ER stress-mediated apoptosis
[57]. Overexpression of the ER stress response gene, p53-
upregulated modulator of apoptosis (PUMA), increased apop-
tosis in cultured cardiomyocytes subjected to activation of the
UPR [67], and targeted deletion of PUMA in mouse hearts was
associated with reduced cardiomyocyte death upon ex vivo
ischemia/reperfusion [68].

Although the reasons underlying the seemingly paradoxical
results described above are not known, it is possible that like
some other signaling pathways, the UPR can mediate both
protective and damaging effects in the heart, depending upon
the context. In support of this possibility is a study which
showed that in cultured cardiac myocytes, simulated ischemia
activated protective aspects of the UPR at early times, but at
later times, apoptotic features of the UPR were dominant [61].
This finding is consistent with general views that during the
initial phases of ER stress, the UPR mediates induction and
activation of protective genes and proteins, but upon continued
ER stress, pro-apoptotic machinery is activated. Although the
mechanistic details of such a dual function for the UPR are
still being worked out, one possibility is that ATF6, PERK and
IRE-1 may be activated to different extents, depending upon the
strength and nature of the ER stress, and that some effectors,
e.g., ATF6, might mediate activation of mostly protective genes
[33,62], while others, e.g., PERK, may induce a greater number
of pro-apoptotic genes. In a study designed to examine this
possibility, it was shown that in cultured fibroblasts, even mild
ER stress activates the 3 proximal effectors of the UPR to
similar extents, which argues against selective activation of
ER stress response effectors as a mechanism [69]. In the same
study, it was shown that during mild ER stress, survival is
favored due to the intrinsic instabilities of mRNAs and proteins
that promote apoptosis compared to those that facilitate protein
folding and adaptation. Thus, it is possible that in the heart, brief
ischemic stress leads to a change in the UPR-regulated pro-
teome that fosters protection, while more prolonged ischemia
alters the proteome in ways that contribute to damage.

6. Future directions

This review has focused on roles for the UPR in the ischemic
myocardium, which are just beginning to be appreciated. In this
context, many potentially important studies concerning the
function of the UPR in the heart are yet to be carried out. For
example, it will be important to determine what parameters
dictate when the UPR fosters protection and when in contributes
to damage in the ischemic heart. This information, coupled with
a more complete understanding of the levels and functions of
genes, and ultimately, UPR-regulated proteins, during ischemic
stress, will be required in order to fully appreciate the impact of
ER stress on myocardial function in the ischemic heart. It will
also be important to determine how the UPR interacts with and
is influenced by the numerous other signaling pathways known
to be activated in the ischemic heart, including hypoxia-in-
ducible factor-1, AMP kinase, nitric oxide synthase, nuclear
factor kappa B, as well as the mitogen-activated protein kinase
and protein kinase C families. Finally, there is evidence that
in addition to ischemia, the UPR is activated in the heart
under other conditions, including hypertrophy and heart fai-
lure [58,70,71]. Moreover, the UPR appears to be important for
cardiac development [72,73], as shown by the finding that the
targeted deletion of the XBP1 in mice leads to embryonic
lethality due to incomplete heart development [74]. Thus, it is
apparent that the ER-associated UPR protein quality control
system plays important roles in the normal heart, as well as the
stressed and diseased heart, underscoring the importance of
future studies aimed at elucidating the roles of this intricate
signaling pathway in the heart.
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