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Abstract Pseudofactorialism is defined as ‘the invalid statistical analysis that results from the misidentification of
two or more response variables as representing different levels of an experimental variable or treatment factor. Most
often the invalid analysis consists of use of an (n + 1)-way anova in a situation where two or more n-way anovas
would be the appropriate approach’. I and my students examined a total of 1362 papers published from the 1960s
to 2009 reporting manipulative experiments, primarily in the field of ecology.The error was present in 7% of these,
including 9% of 80 experimental papers examined in 2009 issues of Ecology and the Journal of Animal Ecology. Key
features of 60 cases of pseudofactorialism are tabulated as a basis for discussion of the varied ways and circum-
stances in which the error can occur. As co-authors, colleagues, editors and anonymous referees and editors who
approved them for publication, a total of 459 persons other than the senior authors shared responsibility for these
60 papers. Pseudofactorialism may sometimes be motivated by a desire to test whether different response variables
respond in the same way to treatment factors. Proper procedures for doing that are briefly reviewed. A major cause
of pseudofactorialism is the widespread failure in statistics texts, primary literature and documentation for statistics
software packages to distinguish the three major components of experimental design – treatment structure, design
structure, response structure – and clearly define key terms such as experimental unit, evaluation unit, split unit, factorial
and repeated measures. A quick way to check for the possible presence of the pseudofactorialism is to determine
whether the number of valid experimental units in a study is smaller than (i) the error degrees of freedom in a
multi-way anova; or (ii) the total number of tallies (N) in a multi-way contingency table. Such situations also can
indicate the commission of pseudoreplication, however.

Key words: evaluation unit, experimental unit, factorial experiment, pseudoreplication, repeated measure, split-
unit design.

We are usually ignorant which, out of innumerable
possible factors, may prove ultimately to be the most
important. . . . We usually have no knowledge that
any one factor will exert its effects independently of
all others that can be varied. . . . If the investigator in
these circumstances, confines his attention to any
single factor, we may infer either that he is the unfor-
tunate victim of a doctrinaire theory as to how
experimentation should proceed, or that the time,
material, or equipment at his disposal are too limited
to allow him to give attention to more than one
narrow aspect of his problem.

– R.A. Fisher (1935)

Whenever, in experimental, comparative, or social
psychology, a systematic investigation of the primary
effects and the interacting effects of a number of
experimentally controllable factors is being con-
ducted, the principles of efficient factorial design
can be invoked with inestimable benefit.

– R.S. Crutchfield (1938)

The frequency of this error [pseudofactorialism],
rare in the older literature, seems clearly a conse-

quence of the ease with which multi-way anovas can
be carried out by canned programs at little cost in
time or mental effort to the investigator.

– S.H. Hurlbert and M.D. White (1993)

INTRODUCTION

Pseudofactorialism is an error found, most commonly,
in multi-way anovas of experimental data (Hurlbert &
White 1993). As a context in which to discuss and
understand it, some historical perspective on factorial
experiments and use of multi-way analyses of variance
(anovas) may be helpful.

Concept of the factorial experiment

A (multi-)factorial experiment is defined as a manipu-
lative experiment for assessing the effects of two or
more treatment factors (or experimental variables) on
the experimental unit (e.g. Fisher 1935; Yates 1937;
Cox 1958; Steel & Torrie 1960, 1980; Snedecor &
Cochran 1967; Kirk 1982; Mead 1988; Hinkelmann &
Kempthorne 2008).Accepted for publication October 2012.
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The logic of Fisher’s and Crutchfield’s imperatives
above must have been apparent to many scientists in
many disciplines as soon as formal experimental
methods came into use, even if many, being ‘unfortu-
nate victims’ and/or short of resources, stuck to uni-
factorial experiments. In the field of psychology in
particular, the notion that one should study only one
treatment factor at a time, ‘the law of the single vari-
able’ (Peters & VanVoorhis 1940) or ‘single factor
fetish’ (Crutchfield 1938), was a counter-imperative
that still had force with some investigators into the
early 1940s (Rucci & Tweney 1980). Yet it was an
experimental psychologist, Gustav Fechner, who, in
his Elemente der Psychophysik (1860), had been perhaps
the first scientist to explicitly present and advocate
factorial treatment structures for experimentation
(Stigler 1986). In his book, Experimental Agriculture,
James Johnston (1849, fide Cochran 1976) also hinted
at the desirability of looking at different treatment
combinations when effects of two types of fertilizer
were to be examined.

Not surprisingly, widespread use of factorial experi-
ments occurred only after Fisher’s development of the
anova. This provided a sophisticated replacement for
earlier, more ad hoc, more cumbersome ways of analys-
ing data from such experiments.Given that in the 1920s
most scientists were still just beginning to become
competent in simpler statistical methodologies, one
might have expected Fisher to introduce anova with a
simple unifactorial example or at most a 2 ¥ 2 treatment
structure and a completely randomized design struc-
ture. But no such luck! He first demonstrated anova

with data from a factorial agronomic experiment con-
cerning fertilizer effects on potato varieties that had a 12
¥ 3 ¥ 2 treatment structure and a split-split unit design
structure (Fisher & Mackenzie 1923).To make matters
worse the design of the experiment was flawed and this
first analysis incorrect (Yates & Mather 1963; Box
1978; Cochran 1980; Hurlbert 1984).

Fisher and Mackenzie did not employ the term ‘fac-
torial’ in describing this experiment. In Statistical
Methods for ResearchWorkers (Fisher 1925) published 2
years later Fisher still is not using the term factorial
and discusses such experiments only briefly, with a
reanalysis of his ‘potatoes and fertilizers’ study as the
only example, under the heading, Analysis of variance
into more than two portions. Soon he again strongly
advocates their value referring to them only as ‘large
and complex experiments’ (Fisher 1926; Fisher &
Wishart 1930). The bud finally burst open with his
book The Design of Experiments (Fisher 1935) and its
18-page chapter titled The factorial design in experimen-
tation, which was immediately followed byYates (1935)
classic, 42-page monograph on the topic.

Other important works followed.Yates (1937) pub-
lished an extensive and clear technical guide on the
analysis of factorial experiments. anova became a sine

qua non for writers of the next generation of textbooks.
Lindquist (1940), ‘the first bona fide statistics text
devoted to the application of variance techniques in
behavioral research’ (Rucci & Tweney 1980), had a
14-page section on factorial designs and their anovas.
The complexities of multi-way anovas and tediousness
of carrying them out with mechanical calculators not-
withstanding, researchers across the natural, behav-
ioural and social sciences became enthusiastic users of
factorial designs. In a search of the pre-1940 psycho-
logical literature, Rucci and Tweney (1980) found six
published studies that used factorial designs; and
reported that such designs had become quite standard
in psychological research by 1957.

Over the next several decades, the conduct of a
multi-way anova, once you had decided which one
should be done, became exceedingly easy. First, large
electronic computers and IBM cards replaced
mechanical calculators. Then the latter were replaced
by personal computers and statistical software
packages. One consequence of this has been that the
incentive for making sure the anova you are conduct-
ing is an appropriate one has been greatly reduced. If
you do the wrong analysis you at least are not wasting
much time compared with what you would have
wasted, say, 70 years ago.

Major confusion also has been fostered by the jargon
and undefined or carelessly defined terms found in the
manuals for many statistical packages. These often
exhibit little concordance with the classical terminol-
ogy of experimental design. To a small extent this is
understandable in that the manuals must serve analy-
sis of all sorts of observational studies as well as experi-
mental ones.

But even in documents specifically aimed at analysis
of manipulative experiments misunderstandings of the
most fundamental sort are promoted. SAS (2007), for
example, formally defines ‘experiment’ as ‘a process or
study that results in the collection of data’. A bit too
inclusive perhaps?! The same document defines, ‘An
experimental or sampling unit [as] the person or
objects that will be studied by the researcher. This is
the smallest unit of analysis in the experiment from
which data will be collected’. With that advice, one
wonders why 100% of the users of SAS/SYSTAT are
not committing pseudoreplication or pseudofactorial-
ism (sensu Hurlbert 1984, 2009, in press; Hurlbert &
White 1993); experimental unit and sampling unit (=
observational unit = evaluation unit) have been syno-
nymized! In the current edition of the SAS/SYSTAT
User’s Guide (SAS 2012, The PLAN Procedure,
Example 67.2), an observational study with a nested
sampling scheme is presented as an example of a ‘fac-
torial experiment’ and the factors defining the levels of
sampling are called ‘treatments’. That example has
been in the User’s Guide at least since 1990, misedu-
cating all who took it seriously.
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Adding further challenges for the researcher are new
statistical methodologies that are quickly incorporated
into software packages and that, understood or not,
sometimes develop an attraction as the hottest fashion.

In any event, the growth in the use of multi-way
anova that has paralleled the increasing use and
complexity of factorial experiments has possibly led to
an increase in the proportion of the scientific papers
containing serious statistical errors. It seems that
increasing numbers of experimenters are using meth-
odologies they have not fully understood or digested.
And that an increasing fraction of scientists who serve
as editors and manuscript referees for journals lack
competence to evaluate the increasingly diverse and
complex statistical methodologies they find in
manuscripts.

Pseudofactorialism defined

Out of the large educational effort demanded by this
situation, the present study takes on only one small
task: that of analysing a particular class of statistical
error termed pseudofactorialism that is found in many
papers using multi-way anova.

Pseudofactorialism was first discussed by Hurlbert
and White (1993). They defined it as ‘the invalid sta-
tistical analysis that results from the misidentification
of two or more response variables as representing dif-
ferent levels of an experimental variable. Often the
invalid analysis consists of use of an (n + 1)-way anova

in a situation where two or more n-way anovas would
be the appropriate approach’.

In their survey of 95 experimental papers on zoo-
plankton ecology, Hurlbert and White (1993) found
the error in five papers, or 28% of the 18 papers that
used multi-way anova. They concluded that ‘The fre-
quency of this error, rare in the older literature,
seems clearly a consequence of the ease with which
multi-way anovas can be carried out by canned pro-
grams at little cost in time or mental effort to the
investigator’. The related error of pseudoreplication
(sensu Hurlbert 1984, 2009) was found in 41% of
these 95 papers.

To put the reader on firmer ground, let us consider
a simple example of pseudofactorialism. Schmitt
(1987) defined as experimental units six large, widely
spaced plots on cobble substrate in a subtidal marine
environment. Three were maintained as a control
treatment, and to each of the other three additional
clams were added to see which if any of three naturally
occurring clam predators in the area (lobster, octopus,
snail) increased in abundance in response to the aug-
mented clam density. Predator abundances were deter-
mined over four successive surveys, and the mean
abundance of each predator species determined for
each plot. Those means were then plugged in to a

two-way anova to test for a clam effect, a predator
species effect, and the interaction of the two, using an
error mean square with 12 (= 2•3(3 - 1)) degrees of
freedom (d.f.) in each case. One correct procedure
would have been to conduct a separate one-way anova,
with only 4 (= 2(3 - 1)) error d.f., for each predator
species. Predator species was only a category of
response variable, not a treatment factor. A separate
one-way anova for each predator species on each date
would also have been a valid approach and probably
even more suitable to the author’s objectives.

Since 1993 there appear to have been no other
surveys of this error, under pseudofactorialism or any
other label. At least two works do mention pseudofac-
torialism in passing, each defining it incorrectly.
Underwood (1997) seems to define it as ‘arbitrarily
putting unrelated experimental treatments into a more
complex experiment’. Tindall et al. (2007) define it as
using ‘a large number of t-tests to analyze . . . [a data
set because Hurlbert &White believe] that a correction
for multiple tests might be useful to maintain an
experiment-wide p-value of 0.05 (e.g. Bonferroni or a
modified Bonferroni correction)’. Both mischaracteri-
zations are so puzzlingly incorrect that little more can
be said. Hurlbert and White (1993) did not discuss
adjustments for multiple comparisons. However in a
recent review of the topic, Hurlbert and Lombardi
(2012), like many others before them, point out the
irrational and arbitrary nature of such adjustments for
‘multiplicity’ and recommend they never be used.

The specific objectives of this review are to docu-
ment the frequency and varied guises of pseudofacto-
rialism via two new literature surveys, to analyse the
conceptual and terminological problems that foster its
commission, and to show how easy is its detection and
avoidance.

METHODS

The first literature survey was conducted with the help of
students in a graduate course in experimental design that I
taught at San Diego State University for many years. As an
independent project each student evaluated 20 or 25 recent
papers selected by him- or herself and reporting the results of
one or more manipulative experiments. The usual criteria
used by a student for their selection were that they were in a
particular journal or on a particular topic, typically in some
area of biology. Each student filled out a form detailing the
treatment structure, design structure and response structure
(as these three aspects have been distinguished by Finney
1955; Urquhart 1981; Hinkelmann & Kempthorne 1994,
2005, 2008;Valiela 2001; Hurlbert & Lombardi 2004; Hurl-
bert 2009, in press) of each experiment.They then filled out
a form detailing whether any of nine common, specific sta-
tistical errors were committed in the statistical analysis of the
experiment. Pseudofactorialism was one of those errors. For
four of the many years in which this exercise was used (1991,
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1995, 1996, 1998) I tabulated and kept (and did not lose!)
the results for the whole class. I personally checked every
instance where a student claimed to have found pseu-
dofactorialism. Most of the cases of pseudofactorialism
reported in this article were found by these students or those
in earlier or later classes.

For a second survey, I examined every experimental paper
published in the Journal of Animal Ecology in 2009 (Nos. 1–6)
and in Ecology during the first half of 2009 (Nos. 1–6). For
each paper it was determined whether they reported at least
one experiment that was analysed by a multi-way anova,
either in classical form or via a generalized linear model or,
more rarely, a multi-way contingency table. For each such
experiment it was determined whether any of these analyses
constituted pseudofactorialism.

For each case of pseudofactorialism found in each survey
the following information was recorded and tabulated: (i)
the number of treatment factors or classification blocking
factors (and levels of each) in the experiment; (ii) the
number of pseudofactors (and ‘levels’ of each) used in
the anova; (iii) total number of experimental units in the
experiment; (iv) the correct error d.f. available for testing
for an effect of the first valid treatment factor listed; (v) the
error d.f. actually used in that test; (vi) whether the anova

treated the pseudofactor as completely crossed with the
treatment factors or as nested under them (i.e. masquerad-
ing as a split-unit design); (vii) the number of persons col-
laborating in the publication of the paper, i.e. the number
of co-authors, plus named manuscript reviewers, plus three
(one editor and two anonymous referees assumed); and
(viii) per cent reduction in the critical value of F, for
alpha = 0.05, caused by the pseudofactorialism-generated,
spurious inflation of error d.f.

The term ‘pseudofactor’ is used as shorthand for a cat-
egory of response variable that is erroneously treated as a
genuine treatment factor in an anova or comparable
procedure.This use of the term should not be confused with
its more common use to describe a technical device for

facilitating the construction and analysis of experiments,
especially those with large numbers of treatments (Yates
1936; Monod & Bailey 1992; Hinkelmann & Kempthorne
2005). When a category of response variable is referenced
neutrally, without regard to how it is treated statistically, it
may be termed simply a response variable factor.

As a check on my interpretations and a courtesy to the
authors, after a complete draft of this paper was ready it
sent to at least one author for each of the 60 papers cited
for pseudofactorialism. They were asked to let me know if
they found any error in my analysis and were also invited to
comment on the manuscript itself. Reminders were sent to
initial non-responders and a few months were allowed for
this process. Responses were received on 37 of the papers,
and almost all authors agreed their analysis that I had cited
constituted pseudofactorialism. Two authors thought they
had committed no error and stood firm even after my
further explanation. A few said they had no time to look at
the manuscript, or said they would get back to me with
comments but did not do so. Almost without exception the
responses were constructive and good-natured. Many
improved the paper. This process was followed to help fore-
stall needless post-publication flurries of complaint or
rebuttal based on misunderstandings.

RESULTS

Frequency of occurrence

The frequency of papers containing one or more cases
of pseudofactorialism in the two new surveys and in
that of Hurlbert andWhite (1993) is shown inTable 1.
When expressed as a fraction of the total number of
experimental papers examined, frequency of pseudor-
eplication ranged from 5% to 9%.Those estimates can

Table 1. Frequency of pseudofactorialism as determined in several surveys

Survey

Number of experimental papers
Frequency of

pseudofactorialism (%)

Total No.
analysed

No. using
multi-way anova†

No. committing
pseudofactorialism

100•nP/nT 100•nP/nM(nT) (nM) (nP)

Hurlbert and White (1993) 95 18 4 5 28
SDSU Experimental Design students

1991 380 ? 27 7 ?
1995 380 ? 35 9 ?
1996 260 ? 14 5 ?
1998 167 ? 8 5 ?
All years 1187 ? 84 7 ?

Current ecological literature (2009)
Ecology, 90(1–6) 47 34 4 9 12
Journal of Animal Ecology, 78(1–6) 33 22 3 9 14
Combined journals 80 56 7 9 12

All surveys 1362 ? 95 7 ?

†Including general linear model and non-parametric equivalents. Question marks indicate the value is unknown. SDSU,
San Diego State University.
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be regarded as unbiased for the specific, mostly bio-
logical literatures examined as in each case the experi-
mental papers were selected for examination without
any evident bias favouring or disfavouring papers likely
to exhibit the problem. These estimated frequencies
may underestimate the true frequencies, however, if we
assume that students missed some cases of pseudofac-
torialism in these 1187 papers they examined.

When only papers employing multi-way anovas are
considered, the observed frequency of pseudofactori-
alism ranged from 12% to 28%. This frequency could
not be calculated for the student surveys, as the stu-
dents were not asked to record the number of experi-
mental papers in their paper sets that used multi-way
anova or multi-way contingency tables.

Sixty variations on a theme

Salient features of 60 cases of pseudofactorialism
found in the latter two surveys are documented in
the Supplementary information (SI). Of these cases, 49
come from the student surveys, seven from my exami-
nation of 2009 papers in Ecology and Journal of Animal
Ecology, and four from other sources. Many of the
papers found by the students are not tabulated here,
for the following reasons.

First, it was decided in the interests of fairness, given
the widespread nature of his problem, not to allow any
person to appear more than once in this list as a senior
author.

Second, some papers seemed to commit pseudofac-
torialism but gave such scant information on statistical
procedures the information desired for the SI was
not ascertainable with any confidence. For example,
Herman et al. (1986) conducted an experiment on the
effects of the herbicide atrazine on attached algae
in limnocorrals (polyethylene enclosures in a lake),
applying atrazine to three limnocorrals and keeping
three as controls. Abundance of attached algae was
measured at four different depths.The authors stated,
‘The anova procedure was used in the analysis . . .
with sampling depth considered a separate factor’.We
inferred that a two-way anova was used that treated
depth as a treatment factor completely crossed with
atrazine level, generating 16 (=2•4(3 - 1)) error d.f.
That would be a clear case of pseudofactorialism.
However, certainty was not possible as no anova table
was given or error d.f. mentioned.

A similar case (Hambright 1994) involving tempera-
ture measurements made at five depths in experimen-
tal ponds with and without fish actually presented a
full anova table, with depth treated as an experimental
variable fully crossed with ‘fish’. So that paper is listed
in the SI. As usual, no good deed – clarity, in this case
– goes unpunished. Just as when measurements on
experimental units are repeated over time, there are a

variety of analytical options and we briefly review these
in Discussion.These might involve using the tempera-
ture profile to calculate the mean temperature, the
slope of the vertical temperature gradient, or the heat
gain per pond. Each such composite response variable
is just another way of representing the effect of fish on
one thermal property of the ponds.

The main patterns

As is common in many types of biological experi-
ments, especially field experiments, the total number
of experimental units in most studies was small: only
seven of the 60 experiments analysed had employed
more than 40 experimental units (SI, column D).The
limited power of such experiments incites a certain
concupiscence with respect to additional error d.f.,
however they might be obtained.

One indicator of possible pseudofactorialism is
when the number of error d.f. used in testing for
treatment effects exceeds the total number of experi-
mental units in the study. In simple situations (e.g.
Lauenroth et al. 1978; Schmitt 1987; Hambright
1994: SI), the pseudofactorialism produces spurious
error d.f. equal to the true error d.f. times the number
of ‘levels’ of each pseudofactor.

Pseudoreplication of various types, however, also
yields error d.f. that exceed the number of experi-
mental units in the experiment. It is an error that
can occur by itself, but it can also co-occur with
pseudofactorialism. Pseudoreplication occurred in 16
of the 60 analyses with pseudofactorialism (SI, column
F, footnote e). That frequency jumps to 27 out of 60
analyses if we include those cases where temporal
pseudoreplication resulted from treating time, in a
multi-way anova, as a treatment factor completely
crossed with treatment factors in experiments with
repeated measures response structures. Such cases
represent, of course, only one of several ways in which
temporal pseudoreplication is committed.

In cases of pseudofactorialism, the response variable
factor is most commonly treated analytically as a factor
completely crossed with the genuine treatment factors
in the experiment. In four of the 60 analyses, however,
the response variable factor was treated as a subunit
treatment factor in a split-unit design structure (SI,
column G). Note that in these cases, the error d.f. for
assessing the effect of the whole unit treatment
factor(s) are not spuriously inflated. In such cases tests
for whole unit treatment factors are likely to be little or
not at all affected. However, the error d.f. for testing of
the putative ‘subunit factor’ and its ‘interaction’ with
the whole unit treatment factor will be spuriously
inflated to a degree that is unknown but dependent on
the magnitude of the correlations among the response
variables within experimental units. There are no
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grounds for regarding the response variable factor as a
treatment factor of any sort. The several sources of
confusion here are addressed in Discussion. These
concern the definitions of experimental unit, split-unit
design structures, and repeated measures response
structures. Confusion over these lies at the bottom of
all sorts of misery in the literature in addition to the
problem of pseudofactorialism itself. The disdain of
many professional statisticians for use of clear, stand-
ardized terminologies often is to blame (Hurlbert, in
press).

When the response variable factor is treated as a
treatment factor fully crossed with the genuine treat-
ment factors, analysis of the latter is compromised by
the spurious inflation of the error d.f. employed in the
analysis. This will tend to bias P values downward.
How much downward will be a function of how much
the incorrect analysis has altered sums of squares, a
matter impossible to discern in most papers.

Nevertheless, as an index of bias due to incorrect
error d.f. alone, we can determine how much the criti-
cal F value is reduced for any specified alpha. The per
cent reduction is quite variable from one case of pseu-
dofactorialism to another but, for alpha = 0.05, that
reduction ranged from 1% to 97% in the cases docu-
mented (SI, column I). Such reductions may or may
not affect decisions. For example, for neither a P value
of 0.80 nor one of 0.01 is a 50% reduction in P likely
to change conclusions regarding the existence of a
treatment effect.

When P values are closer to alpha values used by
paleoFisherians and Neyman-Pearsonians (see Hurl-
bert & Lombardi 2009) to dichotomize results into
‘significant’ and ‘not significant’, one can calculate, for
any given treatment (numerator) and error (denomi-
nator) d.f., what reduction in the F value for the treat-
ment factor is required to lower a P value of, say, 0.10
to, say, 0.05 or 0.01 (Table 2). As shown, a lowering to
0.05 generally requires a 20–50% reduction in the F
value, while a lowering to 0.01 requires a 40–90%
reduction.

The total number of collaborators involved in pub-
lication of these 60 papers is 459 (SI, column H). Add
on the 60 senior authors and we have 519 persons who
found pseudofactorialism to be acceptable procedure
– or who perhaps reviewed statistical analyses in a
manuscript only superficially. Very few of these 519
persons are professional statisticians. Good applied
statisticians, busy people all, often are reluctant manu-
script referees for disciplinary journals outside their
own field. Presumably they feel that tutorials on basic
statistics simply should not be their responsibility. A
large but uncounted number of the 519 collaborators
are or have been editors or editorial board members
of scientific journals; they and many others of the
519 also have served as referees for other scientific
journals. Is the fox is in the henhouse, so to speak, and
the farmer on vacation?

How do we get out of this positive feedback loop?
Referring to the high frequency of various types of
statistical malpractice in experimental papers on zoo-
plankton ecology, we noted ‘the tremendous burden it
places on conscientious editors, reviewers, thesis advi-
sors, and statisticians. The morass of incorrect statis-
tical analyses in the literature creates a Sisyphean task
for them. It provides an abundance of negative models
that continually are undoing their instructional efforts’
(Hurlbert &White 1993).The drum will not be beaten
further on this point.

A caveat

It should be emphasized that the citing of a case of
pseudofactorialism in a paper is in no way an indict-
ment of the overall quality of a paper. Some
responding authors wanted me to make this clear
with respect to their paper and perhaps even mention
that their conclusions would have been unaffected
by a corrected statistical analysis. But that is simply
not feasible. And evaluation of the overall quality of
even a single paper would require a difficult and often

Table 2. Per cent reduction (R) in the critical F values needed for a P value to decrease from 0.10 to 0.05 or 0.01, as a function
of numerator and denominator (error) degrees of freedom (d.f.)

Denominator d.f.

Numerator d.f., a = 0.01 Numerator d.f., a = 0.05

1 2 4 1 2 4

1 99 * * 75 * *
2 92 91 * 51 53 *
4 79 76 74 41 38 33
8 69 64 60 35 30 27

16 64 57 51 32 26 23
• 59 50 42 29 23 19

*This combination of treatment and error d.f. not possible for a comparison of two or more treatments. R is calculated as
R = (1 - F0.10/Fa) where a is 0.05 or 0.01 and F is the ratio of the mean square for the treatment factor to the mean square for
error that will yield a P value of 0.10, 0.05 or 0.01 respectively.

PSEUDOFACTORIALISM 651

© 2012 The Author doi:10.1111/aec.12010
Austral Ecology © 2012 Ecological Society of Australia



subjective evaluation of a dozen factors, including
other statistical analyses presented in the paper, that
are not germane to the topic of this review.

DISCUSSION

Pseudofactorialism is just another simple error that
scientists are deceived into committing (and recom-
mending!) by the long-standing terminological chaos
in experimental design and statistics generally, as I
have commented elsewhere (Hurlbert 2009, in press).
That chaos permeates most statistics textbooks, the
manuals for statistical software, the primary literature
of statistics itself and that of all the natural and social
sciences.

In the following discussion, the tabulated cases of
pseudofactorialism (SI) are used to illustrate more
concretely some key terminological and technical
issues. Many statisticians see no need for making their
terminologies as precise as their symbolic notation and
as consistent across disciplines as possible (Hurlbert
2009, in press). Such statisticians thus may find this
discussion tedious, irrelevant and with insufficient
symbolic notation and mathematics to merit their
attention. No apology is offered. They are wished
‘Good luck!’ in their continued attempts to communi-
cate with non-statisticians.

Single-unit designs

Some confusion derives from the fact that we have
never had an umbrella term for all those design struc-
tures that are not split-unit.The term single-unit designs
may serve for that purpose. This would refer to all
experiments where the experimental unit is defined at
only one scale.

Thus there are two primary dimensions to the
design structure of any experiment. The first is
whether the design is single-unit or split-unit. The
second is whether completely randomized, rand-
omized block or systematic assignment of treatments
to experimental units is used. This is specified sepa-
rately for each level in split-unit, split-split unit etc.
design structures. If we adhere to the classical defini-
tion of ‘split unit’, then only factorial experiments can
have split-unit design structures.

‘Factor’ and ‘factorial’

The word factor has many usages and connotations,
and these are hardly less diverse in statistics than in the
English language generally. Many statistics texts use it,
with a qualifier, for a very limited number of formal
terms, such as treatment factor, blocking factor and so

on. A few define many more such formal terms. For
example, Lee (1975) recognizes: subject factor, error
factor, treatment factor, blocking factor, group factor, trial
factor, unit factor, fixed factor, random factor, qualitative
factor, quantitative factor, phantom factor, control factor,
nest factor, terminal factor and constant factor.

It is evident that the term factorial derives from
factor. So a neophyte might be excused from thinking
that every experiment is ‘factorial’ in some sense.
However, most statisticians have long paid at least lip
service to the definition of factorial experiment given
at the beginning of this article, adopting factorial as
shorthand for multi-factorial. The simplest factorial
treatment structure involves two treatment factors.

Yet many textbooks, confusing the distinctions
among treatment, design and response structures, misuse
the term factorial. Raktoe et al. (1981) aim ‘to present
a systematic and unified approach to the subject of
factorial designs’; but they omit all consideration of
factorial experiments with split-unit design structures.
They are willing, however, to label as ‘factorial’ an
experiment with a single treatment factor and a rand-
omized block design structure, just as did Federer
(1975).

Winer et al. (1991) describe as a ‘2 ¥ 2 ¥ 3 factorial
experiment’ what is in fact a 2 ¥ 3 factorial experiment
with a completely randomized split-unit design
structure. Winer et al. characterize it as a three-factor
design by treating ‘hospital’ (= the (whole) experimen-
tal unit) as a treatment factor. They suggest (p. 361)
that in a ‘bona fide factorial experiment’ the design
must be a single-unit one. A simple 2 ¥ 2 factorial
experiment with a split-unit design structure is not
‘bona fide’ in their unconventional language.

Sokal and Rohlf (1995) reflect the same confusion,
routinely mixing anova terminology and design
terminology. They refer to ‘factorial analysis of vari-
ance’ (p. 369) and claim that, ‘Split plot designs are
quite often incorrectly analyzed as factorial anovas’ (p.
386). The latter point is a useful and valid one only if
‘factorial anovas’ is replaced with ‘single-unit designs’.

Underwood (1997) describes a simple unifactorial
experiment with a standard randomized block design
and labels it a ‘factorial experiment’. But a blocking
factor is not a treatment factor, and mere use of a
two-way anova is not sufficient to justify use of the
label ‘factorial’.

Quinn and Keough (2002) repeat the error of
Raktoe et al. (1981) and Winer et al. (1991) and des-
ignate as ‘factorial’ only experiments with single-unit
design structures.

As they were originally defined, ‘Factorial experi-
ments are experiments which include all combinations
of several different sets of treatments or “factors” ’
regardless of the design structure – completely rand-
omized or randomized block, split-unit or single-unit –
that is employed (Yates 1937; see also Cochran & Cox
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1950, 1957; Federer 1955; Finney 1955; Cox 1958;
Steel & Torrie 1960; Mead 1988; Hinkelmann &
Kempthorne 1994, 2008; Steel et al. 1997). Our usage
should continue to conform to that long-established
definition.We can acknowledge the validity of the term
fractional factorial designs or, better, fractional factorial
treatment structures for situations where one or more of
the possible combinations of employed treatment
levels is absent from an experiment.

Metric-interaction mismatch

The great advantage of factorial experiments is
that they permit assessment of treatment factor
interactions. For a multi-way anova to accomplish this
meaningfully, it is critical that the logically appropriate
metric for effect size be used.This is a matter that has
been ignored in the great majority of the 60 papers
cited for pseudofactorialism and is a problem in addi-
tion to that of the pseudofactorialism itself. It merits
comment here because for many authors, the desire to
test for interaction between a genuine treatment factor
and a response variable factor was evidently one incen-
tive to commit pseudofactorialism.

As discussed most thoroughly by Mead (1988), for
many response variables, perhaps most biological
ones, ‘the natural side on which most measurements
should be made is a log scale . . . it should be assumed
that data for continuous variables should be trans-
formed to a log scales unless there is good reason to
believe that this is not necessary’. Equivalently, one
can say that multiplicative rather than additive models
are usually appropriate for such response variables.

Hurlbert and White (1993) also noted that usually
‘ “magnitude of effect” is most appropriately and
meaningfully measured as per cent change rather than
as absolute change . . . [and that] assessments of factor
interaction in multi-way anovas are meaningful
only when the data are log-transformed prior to
analysis’. Failure to so transform, they termed ‘metric-
interaction mismatch’. Consider a case where ‘species’
is a true treatment factor in an experiment on effects of
nutrient additions on population densities of different
species of algae, with each species in a separate set of
aquaria (experimental units). If we are interested in
treatment interactions, we would want to test with a
two-way anova whether each species showed the same
per cent change in response to nutrient additions, not
whether the absolute increment or decrement was the
same for all species. Log-transformation or a multipli-
cative model does this.

If we simply have a unifactorial experiment on
effects of nutrient additions on aquaria each contain-
ing many algal species we might still have an interest in
assessing the null hypothesis that all species responded
the same way. However, this would have to be done via

an analysis that did not treat species as a treatment
factor but still did reflect definition of effect size as per
cent change.

Experimental units versus evaluation units

In any experiment it is evident that, if anova is used,
the error d.f. available for testing for a treatment effect
is a function of the number of replicate experimental
units used per treatment (or treatment combination)
and the design structure of the experiment. The spu-
rious additional d.f. resulting from treating the pseu-
dofactor as crossed with the real treatment factor(s)
can be regarded as reflecting failure to properly specify
the experimental unit in an experiment and its
analysis.

Thus in the experiment of Schmitt (1987) men-
tioned earlier, the three predator populations in each
plot were each treated as an experimental unit rather
than as the evaluation units that they were. In Ham-
bright (1994), the water masses defined at five depths
in each pond were likewise mistakenly treated as
experimental units rather than as evaluation units. An
evaluation unit is defined as ‘that element of an experi-
mental unit on which an individual measurement is
made’ (Hurlbert & White 1993, after Urquhart 1981).

Such confusion is the same as that which underlies
the commission of pseudoreplication (Hurlbert 1984,
2009). The distinction between the pseudoreplication
and pseudofactorialism resides in that in the former
the same response variable has been measured in each
experimental unit on multiple evaluation units of the
same type (e.g. multiple samples of the same species in
the experimental unit) whereas in the latter, different
response variables have been measured on, usually,
different types of evaluation units (e.g. samples, multi-
ple or not, of different species in the experimental
unit).

Great inflation of error d.f. over the correct error d.f.
can occur when both pseudofactorialism and pseudor-
eplication occur in the same analysis, especially if there
is more than one pseudofactor involved. For example,
that inflation was 315-fold in de la Cruz et al. (1989)
and 508-fold in Diffendorfer et al. (1995) (SI, columns
E and F). In two unifactorial experiments (Gardner
et al. 1995; Howe & Marshall 2002) the inflation was
essentially infinite as there were zero error d.f. for
a correct analysis because all treatments were
unreplicated.

In rare situations, pseudofactorialism causes no
inflation of error d.f. This was the case in Shakarad
et al. (2001), where there were only two levels of the
pseudofactor (sex) and where effect of the treatment
factor (‘selection’) in a unifactorial randomized com-
plete block design was tested for using the block ¥
treatment ¥ pseudofactor interaction mean square
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rather just the block ¥ treatment mean square. The
experimental unit in this study was a fly population;
the authors effectively regarded the males in a popu-
lation as constituting one experimental unit and the
females as constituting another.

Split-unit designs: what they are not

In four of the 18 studies where there were multiple
species present in each experimental unit and the
response variable factor ‘species’ was treated as if it
were a subunit treatment factor in a split-unit design
rather than, as in the other 14 cases, a factor crossed
with the valid treatment factors in a single-unit design
(SI, column G). In two of these four (Mamalos et al.
1995; Finzi et al. 2001) species was explicitly labelled a
subplot (= subunit) factor, in Preen (1995) it was
labelled a repeated measures factor, and in Arnone &
Körner 1995) it went unlabelled.

These authors recognized that, at least in some
sense, species was a factor ‘nested’ under the valid
treatment factor(s). It was, but only as a label for a set
of response variables or evaluation units of qualita-
tively different types, for example individuals or popu-
lations of different species.

The authors also may have been told that to carry
out a separate statistical analysis on each species was
somehow improper or invalid and that they should
include all species in an overall anova of some sort.
That sort of bad advice is indeed common.

In a valid split-unit design, the subunits must receive
the experimental treatments independently and have
the same physical independence from each other as do
the whole units – as must the experimental units in any
kind of experiment. What transpires on one subunit
cannot be allowed to influence what transpires on
another (Cox 1958; Federer 1975; Mead 1988; Wiley
2003; Kozlov & Hurlbert 2006; Hurlbert 2009, in
press). Otherwise biased estimates of treatment effects
and standard errors are highly probable.

Federer (1986) once made a statement frightening
in its implications for the quality of much past and
ongoing experimental work in many fields:

The assumption of [physical] independence among
experimental and/or sampling units is an untenable
one for many situations. Since statistical theory is
considerably easier for independent observations,
we statisticians hide in our i.i.d. world. In many
experiments in agriculture, biology, medicine,
ecology and other areas, the experimental units
are not independent. There may be competition,
memory, carry-over, etc. between adjacent units. It
is felt that the phenomenon of competition between
adjacent units is present in most agricultural, bio-
logical and ecological experiments. Statistical analy-

ses for independent observations is universal but
incorrect for these data. Thus, incorrect or inappro-
priate analyses are being conducted on thousands of
experiments each year.

Indeed, large numbers of inappropriate statistical
analyses are being published, but there is no evidence
that lack of physical independence of experimental
units has been a major contributor to the problem.
Mis-identification of the experimental unit, on the other
hand, has been.

Federer’s statement can be understood only in the
light of his unusual concept of the experimental unit,
as evidenced by many examples in his later book
(Federer & King 2007).There, if a response variable is
measured on the same experimental unit on two suc-
cessive occasions or if two different response variables
are measured on the same experimental unit, the
authors consider that they are dealing with two differ-
ent experimental units rather than, as is the case, just
two different evaluation units. Federer and King
(2007), for example, describe a randomized complete
block design experiment testing effects of five treat-
ments on strawberry production. At harvest time the
strawberries are sorted into four different quality cat-
egories and weighed. The authors treat these catego-
ries as ‘split plot treatments’, implying that each of the
four sets of strawberries obtained constitutes or repre-
sents a separate experimental unit. In another example
(p. 79), 10 different mixed species hay crops are each
grown on six plots; on harvest, the crop for a plot is
sorted into weeds, legumes, and grass ‘to form the split
plot treatments’. The potential for statistical correla-
tions among the four strawberry response variables or
among the three plant type response variables is
obvious; but it has no bearing on whether or not the
actual and only experimental units in these studies, the
plots, were physically independent.

Physical independence is a necessary but not suffi-
cient condition for independence of errors (statistical
independence). The latter is achieved by also employ-
ing randomization in the assignment of treatments to
experimental units, sub- or whole-. In an ecological
field experiment, all the plots could be physically inde-
pendent of each other. But if all those in the northern
end of the field were assigned to treatment A and all
those in the southern end to treatment B, independ-
ence of errors would not likely obtain.

For the four studies in SI that are cited above and
that treated species as a subunit factor, the multiple
species populations in each experimental unit are
unlikely to meet this standard criterion for independ-
ent subunits. Arnone and Körner (1995) planted 77
individual plants representing seven species (including
three tree species) spatially intermingled with each
other on 6.7-m2 plots and determined growth of each
species after 530 days. The potential for the seven
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species influencing each others’ growth in various ways
would seem high. At the end of the experiment, the
leaf area index (m2 leaf surface per square metre of
ground) in the chambers was approximately 4.

Preen (1995) studied in a unifactorial experiment
the effects of simulated dugong grazing on plots in
natural seagrass beds containing two spatially inter-
mixed species of sea grass. Finzi et al. (2001) studied
in a unifactorial experiment effects of elevated CO2

levels on five spatially intermixed plant species occur-
ring in their large outdoor chambers. Mamalos et al.
(1995) studied in a factorial experiment the effects of
nitrogen and phosphorus additions to field plots on
root activity of five spatially intermixed plant species
occurring on their field plots. In all these cases, too,
there can be no grounds for considering ‘species’ to be
a subunit treatment factor. As in all those studies
where it was considered a treatment factor crossed
with the valid treatment factors in a single-unit design,
‘species’ is just a category of response variable, a
response variable factor.

An experiment by Gulmon (1992) gives insight into
when ‘species’ might or might not be validly treated as
a subunit treatment factor. This experiment was
designed to examine the effect of date of first watering
(four dates) on germination rate for seven plant
species. Four 25 cm ¥ 50 cm flats of soil were set up
for each watering date, and seeds for the seven species
were sown in seven parallel rows within each flat. The
total number of seeds sown per flat was 2095. Because
Gulmon’s statistical analysis treated species as com-
pletely crossed with watering date in a single unit
design, I considered this an example of pseudofacto-
rialism (SI, column G).

But would this judgement have been justified if
Gulmon had analysed this as a split-unit design? I
would say no. After all, the species were essentially in
spatially distinct subplots (= monospecific rows) just as
in a standard agricultural split-unit experiment.
Although the rows were separated from each other by
only a few cm and the overall seed density quite high,
the potential for events on one row affecting what
transpired on other rows was low given the nature of the
experiment. Specifically, every time a seed germinated
the event was tallied and the seedling was removed from
the flat. Now if seedlings had not been plucked and the
plants had been allowed to grow to maturity so as to
determine effects of watering date on biomass at plant
maturity, then each flat would have turned into a tangle
of vegetation – and the necessary physical independ-
ence of the supposed subunits would have been lost.

So, as it was, Gulmon analytically treated a valid
split-unit design as a single-unit one. Potvin (1993) has
called that ‘the most frequent and . . . damaging error
occurring in the statistical analysis of greenhouse or
growth chamber experiments’. It spuriously inflates
error d.f and deflates estimates of error. Potvin presents

and analyses a hypothetical data set for an experiment
with a split-unit design with two levels for the whole
unit treatment factor (A), six levels for the subunit
treatment factor (B), and two whole (experimental)
units per level of A. Properly done, the analysis yields a
P = 0.025 for the test for an effect of A.When I analyse
these data as if they came from a single-unit design, the
test for an effect of A yields a P = 0.00000021.This is a
consequence of the error d.f. having jumped from 2 in
the first case to 12 in the second. P values for tests for
factor B and the A ¥ B interaction were much less
affected as the error d.f. jumped only from 10 to 12 in
going to the incorrect analysis.

Statisticians themselves have long been and con-
tinue to be a major source of confusion on these
matters (Hurlbert, in press). Federer (1977) labels as
a randomized complete block split-unit design one
where the ‘whole unit’ is a pen of piglets in which each
piglet gets a different nutritional supplement, the puta-
tive subunit factor. In his text on experimental design,
Gill (1978) presents an experiment to compare the
growth rates of steers of s different size classes on f
different feed types, with s steers (one from each size
class) maintained in each of p pens per feed type. Gill
refers to this as a randomized complete blocks design,
with the pen as block, and then analyses it as a split-
unit design. Neither example conforms to a split-unit
design, as there is high potential for the individual
piglets or steers in each pen – each supposedly repre-
senting an independent subunit – to influence each
other’s growth. They are actually experiments with
completely randomized single-unit design structures
and multiple response variables.

Worse yet, as discussed in Hurlbert (in press), two
recent statistics texts (Federer & King 2007, as dis-
cussed above, and Casella 2008) present many more
examples where evaluation units within the same
experimental unit are taken to represent physically
independent subunits in a split-unit design. Casella
(2008) gives one example where plants are exposed to
different levels of ozone and defines the upper and
lower portions (where measurements are made) of
each plant as subunits in a split-unit design. When
successive measurements are made on an experimen-
tal unit over time, Casella (p. 208) refers to time as a
treatment factor and to the experimental unit on any
given monitoring date as a subunit (‘split plot’).

Intersection with temporal pseudoreplication

The reader will note that in 20 of the 60 studies, time
or some correlate of it is a or the pseudofactor (SI).
The label used for this factor varied among studies and
included date, year, time, instar, days, season, cohort and
period. In all cases, these correspond to measurements
made on the same experimental units under the same
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treatments at successive points in time.They represent
repeated measures, as classically defined.

In some cases, repeated measurements serve simply
to document how effect sizes change with distance in
time from the beginning of the experiment. In other
cases, the interest is in temporal change in response
variables that is associated with particular environ-
mental conditions that are changing with time, for
example night versus day, spring versus summer versus
autumn, high tide versus low tide.

Temporal pseudoreplication is defined as an analysis
that treats measurements made successively over time
on one or more experimental units as if each measure-
ment represented or came from an independent
experimental unit (Hurlbert 1984, 2009; Hurlbert &
White 1993; Hurlbert & Lombardi 2004). This error
can be committed with many different statistical pro-
cedures, for example t-tests, anovas, chi-squared tests,
non-parametric tests, randomization tests etc. In the
special case where it is committed via a multi-way
anova we have chosen to classify the error as both
pseudofactorialism and temporal pseudoreplication. It
is then a unique type of pseudofactorialism that results
from repeated measurements made on the same type of
evaluation unit, or example the same species popula-
tion, the same soil constituent, the same physiological
variable etc. In that regard it differs from other types of
pseudofactorialism.

Most authors in the SI who treated time as a pseu-
dofactor gave no evidence of sensing any potential
problem with doing so. McGrath et al. (2009) were an
interesting exception. They monitored on nine dates
the number of birds visiting 17 pairs (blocks) of mes-
quite trees, one member of each pair having had most
of its flowers removed by hand. As the birds were
migrants that typically remained in the study area for
less than 2 days, the authors opined that they ‘were
able to resample experimental pairs [of trees] every
three days without fear of pseudoreplication’. In addi-
tion to mistakenly implying that that pseudoreplication
is an error of design rather than one of analysis and
interpretation, the authors were also wrongly implying
that so long as different evaluation units (birds) were
monitored on each date, it did not matter that they
were in the same experimental unit (tree). They stated
that their generalized linear model analysis treated
‘date as a covariate’, but they had 128 error d.f. in the
test for an effect of flower reduction on bird numbers.
That suggests that ‘date’ was additionally treated as
crossed with pair (block) and treatment.

A similar rationale was invoked by Hairston (1986)
in the analysis of his classic field experiment on com-
petition and predation among salamander species.
This involved removing particular salamander species
from particular sets of plots and following population
change in remaining species. At night he and his stu-
dents visually assessed numbers of salamanders active

on the surface of his large experimental plots on 32
monitoring dates over 4 years. Dividing the whole
duration of the experiment into five periods, he
applied two types of anovas to the data for each period
(four to nine monitoring dates per period). One was a
repeated measures anova (details unspecified). The
other was a one-way anova that treated repeated cen-
suses on a given plot as if they represented independ-
ent experimental units and thus qualified as temporal
pseudoreplication. The latter incorrect analysis not
surprisingly always yielded lower P values for treat-
ment effects, at least as far as can be inferred from
Hairston’s tables.

Hairston acknowledged that his one-way anovas
‘technically violate the assumption of independence’.
He claimed, however, that ‘the relatively small propor-
tion of all specimens present seen during one visit
reduces the importance of the violation’. He thought,
like McGrath et al. (2009), that as long as he rarely or
never saw the same individual salamander more than
once, he could treat the successive counts as if they
came from different independent experimental units.
The criterion is irrelevant.Whether a response variable
is measured on the same or different evaluation units
(individuals, materials, locations, components etc.)
within a given experimental unit, the successive meas-
urements for that experimental unit cannot be assumed
to be independent of or uncorrelated with each other.

Split units in time?

None of the cited studies having a repeated measures
response structure was described by its authors as
having a split-unit design or analysed with a standard
split-unit anova with time treated as the ‘subunit
factor’. It is common, however, that simple repeated
measures response structures are described as having
‘split units in time’, simply because a standard split-
unit anova is mathematically identical to a standard
repeated measures anova, as long as the latter does not
employ Huynh and Feldt (1976), Greenhouse and
Geisser (1959) or other corrections to the error d.f.
(The unfortunate use of ‘repeated measures’ as a label
for cross-over designs or analyses thereof is common in
some disciplines, e.g. psychology, but conflicts with
classical terminology and is to be discouraged.)

Cochran (1939) noted the ‘analogy’ between the
analysis for a split-unit design structure and that for a
repeated measures response structure but also warned
that ‘the analogy should not . . . be carried too far . . .’
Federer (1955) threw caution to the wind and sug-
gested that ‘since the design and analytical features [of
a repeated measures response structure] are of the
same nature as split plot designs, there is little reason
to set up a separate category for these designs’. Steel
andTorrie (1960) were one of the earliest texts to have
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a chapter subsection titled ‘Split plots in time’. Over
the last half century many texts have made similar use
of the label, frequently referring to time as a ‘treatment
factor’ and the successive measurements made on one
experimental unit as representing different experi-
mental units. No good has come of this blurring of the
distinction between design structure and response
structure. The concept of ‘splits in time’ was intro-
duced as an early attempt to deal with experiments
involving repeated harvests from the same crops in a
given season (e.g. alfalfa) or over a series of years (e.g.
perennial species such as citrus) when computing
facilities were primitive. Since that time multivariate-
based approaches have become available to deal with
such situations when the researcher is not content to
simply conduct date-by-date analyses, and the concep-
tual distinction between design structure and response
structure has been understood more widely. Applica-
tion of the label ‘split unit’ or ‘split plot’ to anything
other than true split-unit design structures should now
be regarded as an anachronism to be avoided.

Pseudofactorialism in contingency tables

Contingency tables and corresponding procedures
such as chi-squared or G tests are not well suited to
analysis of experiments except where there is a single
response measured on each experimental unit and this
is treated as a categorical variable.

As discussed, when anova or other parametric
procedures are used to analyse an experiment, the
commission of pseudofactorialism and/or pseudorep-
lication is typically indicated by the error d.f. exceed-
ing the number of true experimental units used in the
experiment.

With contingency tables the presence of either of
these errors is typically signalled by N, the total
number of tallies in the table, exceeding the number of
experimental units in the experiment. The number of
d.f. in a chi-squared or G test reflects only the number
of levels defined for each categorical response variable,
not the number of experimental units in the study.The
high frequency of pseudoreplication in contingency
table analyses, even in statistics texts, has long been the
subject of critical review (Lewis & Burke 1949;Wolins
1982; Hurlbert 1984, 2009; Hurlbert & White 1993;
Wickens 1993; Lombardi & Hurlbert 1996; Hurlbert
& Meikle 2003).

In the present set of 60 papers, only two presented
examples of pseudofactorialism in the context of a
contingency table analysis. One of the experiments
conducted by Metaxas andYoung (1998) looked at the
effects of diet (four types) and algal density (four levels)
on vertical distribution of sea urchin larvae in cylindri-
cal, salinity-stratified water columns (four depth strata
defined), with each of the 16 treatment combinations

replicated four times (SI). The experiment thus
involved a total of 64 experimental units. For each
replication, ‘100–200 larvae’ were introduced into the
cylinder, and after 30 min the number of larvae present
in each depth stratum was estimated.

Their statistical analysis consisted initially of apply-
ing a G test to a four-way contingency table with
dimensions corresponding to diet, algal density, ‘rep-
licate’, and stratum; the response variable was implied
to be number of larvae. The d.f. were specified to be
144. N was not specified but presumably was more
than 25 600 (= 4 ¥ 4 ¥ 4 ¥ 4 ¥ ‘100–200’), well above
the number of experimental units in the experiment.
In treating ‘stratum’ as a treatment factor this analysis
commits pseudofactorialism. In treating the individual
larvae (apparently) as the experimental units, the G
test commits pseudoreplication. In treating ‘replicate’
as a treatment factor because it tested for and found
‘heterogeneity’ among replicates, it committed a sin
yet to be named!

Subsequent treatment of this data set entailed
breaking it down into and testing three-way and
two-way contingency tables, with somewhat com-
plex rationales given for doing so. Most of these
analyses also contained pseudofactorialism and
pseudoreplication. Metaxas and Young cite Sokal and
Rohlf (1981) as one of the guides they relied on for
their procedures. On page 750 of that book (page 746
of its 1995 edition), Sokal and Rohlf present a data set
on fruit fly larvae very similar in structure to that of
Metaxas and Young. They demonstrate with it how to
apply log-linear models to a three-way contingency
table. Sokal and Rohlf are vague as to the design of
the experiment that generated their fruit fly data, but
their analysis also seems to represent both pseudofac-
torialism and pseudoreplication.

Distrust authority. Say it loud and say it clear.
A second, simpler case, not referenced in the SI, is

provided by another analysis in Schmitt’s (1987) study
of the effects of increasing clam densities in subtidal
plots on abundances of predaceous invertebrates
there.The number of live and dead (empty shell) indi-
viduals of each of two snail species were determined
for each of three control plots and each of three ‘clams
added’ plots.The counts were then pooled across rep-
licates within clam treatments, thus setting the stage
for sacrificial pseudoreplication. Then log-linear fre-
quency analysis was applied to a three-way contin-
gency table (2 treatments ¥ 2 species ¥ 2 conditions
(live, dead)) with N = 1197. That analysis treated
species and condition as if they were treatment factors
and thereby committed pseudofactorialism as well as
pseudoreplication.

Better would have been to simply use a t-test, for
each snail species, to test whether the response vari-
able ‘per cent alive’ differed between the two clam
treatments.
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Dealing with multivariate response structures

Pseudofactorialism is one of many classes of problems
that originate, in part, from modern design and analy-
sis of experiments having evolved initially in such close
contact with agronomic research. Strong conceptual
frameworks and clear terminology developed more
slowly for the topic of response structure than they did
for the topics of treatment structure and design struc-
ture simply because agronomic experiments typically
had simple response structures consistent with their
very focused objectives. Often the only response vari-
able of strong interest was yield at end of growing
season – a single response variable measured at a single
point in time. A major exception has been the long-
standing interest mentioned above in how to deal with
experimental data from successive harvests over time
for those crops that yield them.

Although in most other disciplines, such as ecology,
psychology and medicine, complex response struc-
tures have long been common, textbooks lagged in
providing coherent discussions of response structure.
Books that cover that topic as well as chapters 15 and
16 in Mead et al. (2003) are vanishingly rare. As Urqu-
hart (1981) intimated, the majority of books do not
even distinguish response structure as a subject matter
distinct from design structure (e.g. Box et al. 1978;
Winer et al. 1991; Sokal & Rohlf 1995; Steel et al.
1997; Quinn & Keough 2002; Federer & King 2007;
Casella 2008; Milliken & Johnson 2009).This is a large
topic on which we offer only a few suggestions here.

The principal dimensions of response structure are
(i) the number and nature of response variables meas-
ured in each experimental unit; (ii) the number and
location of evaluation units on which each response
variable is measured in an experimental unit; and (iii)
the monitoring schedule over time for each response
variable.The variety of potential response structures is
great, as is their potential complexity – and as is the
number of technically valid options available for the
statistical analysis of any given one.

When measurement of a given response variable is
repeated over time, there are a variety of analytical
options (e.g. Mead 1988; Everitt 1995; Keselman et al.
2001; Mead et al. 2003; Casella 2008; Hinkelmann &
Kempthorne 2008; Milliken & Johnson 2009). For
many, perhaps most, experimental data sets perfectly
reasonable interpretations are achieved by conducting
a separate statistical analysis of that response variable
for each monitoring date. That approach is perfectly
valid and does not require any corrections for multiple
comparisons (e.g. Gill 1978; Mead & Curnow 1983;
Mead 1988; Finney 1990; Soto & Hurlbert 1991;
Underwood 1997; Hurlbert & Lombardi 2012), many
claims to the contrary notwithstanding.

Repeated measures anova is sometimes recom-
mended as an alternative approach. It certainly is

preferable to treating time as a treatment factor crossed
with the actual treatment factor(s) and committing
pseudofactorialism. However use of repeated measures
anova implies there is value in testing two trivial null
hypotheses: (i) that the response variable is constant
over time; and (ii) that the treatment effect is constant
over time. Moreover, such anovas must be considered
invalid in the absence of some sort of correction (e.g.
Greenhouse & Geisser 1959; Huynh & Feldt 1976) for
the departure of the within-experimental unit correla-
tion structure from the sphericity assumption.

When the repeated measures correspond to a par-
ticular aspect of time, for example night versus day,
there may be specific interest in assessing how effect
sizes produced by the treatment factors change with
the time factor. For example, if Yd represents the value
of the response variable during the day and Yn repre-
sents its value on the same experimental unit at night,
one could do analysis that tested whether there is a
treatment effect on Yd/Yn or Yd/(Yd + Yn) or (Yd - Yn).
Which of these composite response variables was most
appropriate one would need to be decided with care.
The error d.f. involved would be the same as when
simple response variables were tested.The works cited
above give many suggestions as to the types of com-
posite variables that can be useful.

When there are multiple response variables a parallel
line of reasoning argues for the validity of carrying out
a separate statistical analysis for each. Most researchers
acknowledge, on first principles, that different response
variables are always affected differentially by treatment
factors. They may want to document in what way the
response variables behave differently but testing the
trivial null hypothesis that they all behave the same way
is usually of no interest. And of course for response
variables measured in different units, only a separate
analysis for each variable makes sense. Consider, for
example, an experiment on the effects of nitrogen fer-
tilization on field plots where the three response vari-
ables are soil pH, soil water content (per cent, by
weight), and plant biomass (g per square metre).

When there are multiple response variables of a similar
sort and measured in the same units (e.g. biomass of each
of several species in a plot), however, some researchers
may still wish to test whether the different variables
respond in the same way to the treatment factors, that is,
whether there is an interaction between the treatment
factor(s) and the response variable factor. Some may even
‘feel’ that it is imperative to do so.

As most texts offer no clear guidance for meeting
that objective, researchers have been easily confused
by the terminological chaos in statistics and led into
the commission of pseudofactorialism. One simple
intuitive approach is to create composite variables, like
the ratio of two response variables (e.g. abundances of
two species) and test the effect of the treatment factor
on that ratio. This parallels the suggestion above for
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testing for an interaction between a treatment factor
and time, when experimental units are measured once
at night and once during the day. Mead et al. (2003),
under the heading ‘Joint (Bivariate) Analysis’, give a
clear introductory exposition on other approaches
useful for assessing correlations between two response
variables that may aid interpretation of results.

More complex anovas are possible that would test
for a treatment effect, a response variable effect, and
their interaction. However, these anovas would require
error d.f. adjustments similar to those needed when a
repeated measures anova is applied to data for a single
response variable (e.g. Greenhouse & Geisser 1959;
Huynh & Feldt 1976). These correct, or attempt to
correct, for the anticipated correlation structure of the
response variables within an experimental unit. When
response variables are treated as different levels of a
subunit factor, as in the earlier mentioned examples in
Federer and King (2007) and Casella (2008), and
there is no adjustment of error d.f., the analysis rep-
resents pseudofactorialism.

Many statistics texts do have a chapter or chapter
section on multivariate anova (manova). This proce-
dure can handle repeated measures in time and multi-
ple response variables simultaneously. But it probably is
the least useful of all approaches to analysis of multi-
variate response structures. Nevertheless some authors
state manova to be almost obligatory for response
structures of any complexity that meet requirements of
the methodology. Scheiner (1993) states, ‘When more
than one response variable has been measured the most
appropriate method of analysis is usually multivariate
analysis of variance (manova) in which all dependent
variables are included in a single analysis. Unfortu-
nately ecologists often do not use manova when they
should’. Gotelli and Ellison (2004) state, ‘If . . . we have
a vector of correlated dependent variables [e.g. multiple
response variables and/or repeated measures in time]
we rely on a multivariate analysis of variance (manova)
or other multivariate methods . . .’

Our 60 sets of authors who committed pseudofactori-
alism ignored such advice, which could have offered them
at least technical salvation. Probably they avoided manova

for the same reason as do most other experimenters: it
is an unnecessary and cumbersome methodology for
extracting information from experimental data sets with
multiple response variables. Reporting of manova results
generates a high ratio of ‘statistical baggage’ to ‘scientific
information’. manova tests the uninteresting null hypoth-
esis that for no response variable for no date is there any
difference among treatments.

Beware the referees, too

One final case of pseudofactorialism listed might be
mentioned for a particular lesson it has for young
scientists.

As a graduate student at my university, Jim Mills
(1986) set up four different herbivory treatments using
63 plots in an area of recently burned chaparral veg-
etation in San Diego County. All plots contained, inter
alia, shoots of two naturally occurring different shrub
species, chamise and ceanothus. Response of those two
species to the herbivory treatments was the focus of the
study. When the data were in, Jim did an appropriate
one-way anova for each of the species, wrote up the
manuscript and submitted it to Ecology.

He was pleased when it was judged acceptable
if several changes were made. One reviewer, for
example, had gently questioned why he ‘used separate
tests rather than a two-way anova’ (Anon., pers.
comm. to J. Mills, 1986). Motivated to assure that
his article would be published in such a prestigious
journal as Ecology, Jim responded deferentially to
what he perceived as a strong suggestion. A revised
manuscript with a new, ‘pseudofactorial’ two-way
anova was submitted and accepted. Unfortunately,
it still contained, unrevised in the Acknowledgements
section, Jim’s thanks to myself and another San Diego
State University (SDSU) colleague, Boyd Collier, for
our ‘statistical advice’. But we were not consulted on
the revision. Glad that is cleared up at last! Jim is now
editor of the Journal ofWildlife Diseases and keeping an
eagle eye out for pseudofactorialistas among both his
authors and his referees.

The moral of the story is that bad statistical advice is
often given out by paper referees. Do not accept any
advice without fully understanding and believing in it.
Continue to distrust authority.

Two psychological drivers

Although poor terminology and poor understanding of
statistics are the proximate causes of pseudofactorial-
ism, there are psychological factors that encourage the
error. Two big and interrelated ones we may call ano-
vamegaphilia and alpha paranoia.

By anovamegaphilia is meant the preference of some
statisticians and researchers to tackle analysis of an
experiment by building the most inclusive models pos-
sible and carrying out the biggest, most complex
anovas. The mere size of an analysis, and complexity
and sophistication of the mathematics involved, can be
psychologically attractive to some, especially statisti-
cians of a more theoretical bent.

What might be considered Exhibit A for this phe-
nomenon is a 22-page chapter in Federer and King
(2007) with the title, ‘World’s Record for the Largest
Analysis ofVarianceTable (259 Lines and for the Most
Error Terms (62) in One Analysis of Variance’. Seri-
ously! The table was for a complex, long-term agro-
nomic experiment initiated in the 1950s on pineapple
in Hawaii. It only shows the partitioning of the 768 d.f.
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available, contains as usual no indication of effect
sizes, and seems never to have been published in a
scientific journal.

The second psychological factor, alpha paranoia,
refers to the ‘multiple comparison problem’, the irra-
tional fear of the supposed high risk of making one or
more type I errors when many statistical tests are
conducted. It is that fear that still drives some scien-
tists to recommend manova and/or to disallow or dis-
courage separate analysis of individual response
variables, separate date-by-date statistical tests, and
any other approach that creates ‘multiplicities’. That
fear likely was a motivating factor behind some of the
cases of pseudofactorialism reported here. It has
driven thousands more to unnecessary and arbitrary
use of procedures that involve fixing set-wise or
experiment-wise type I error rates. Justification for
terming this fear ‘irrational’ and fixed set-wise error
rate procedures ‘arbitrary’ and documentation of the
large number of statisticians and scientists who for
decades have been making this same argument is pro-
vided in another review (Hurlbert & Lombardi 2012)
and numerous books and papers cited therein.

CONCLUSION

The causes of pseudofactorialism would seem to be, in
part, the same as those responsible for many other types
of statistical errors in the scientific literature. These
would include,most prominently: a long-persisting lack
of a single, standardized and widely accepted terminol-
ogy for experimental design; a high frequency of unre-
liable advice (books, articles, manuals for software
packages, courses, advisors, referees, editors), includ-
ing that bad advice implicit in the resultant faulty
statistical analyses in the literature; and insufficient
effort on the part of authors to learn the basic principles
of experimental design and analysis and to overcome
the prevalence of bad advice. Improvement of this state
of affairs is clearly a long-term project.

Detecting and/or avoiding pseudofactorialism is,
however, a manageable short-term project. Having a
specific label for the error may help. The graduate
students in my experimental design course had little
difficulty in spotting the problem in papers they exam-
ined independently from me, after having had a
20-min lecture on the topic. And they had had only
one or two courses in statistics prior to my course. To
check for pseudofactorialism, one first determines
whether a multi-way anova (or equivalent) was used.
Then one determines what the experimental unit was
in the study and how many were employed. If the error
d.f. for tests of treatment effects exceed the number of
experimental units used, one checks to see if time or a
response variable factor (e.g. species) was treated as an

experimental treatment factor in the multi-way anova.
If it was you can put a pseudofactorialista notch in the
handle of your pistol.
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